

LIFE OrgBalt progress and what`s next – overall view

3rd Steering group meeting February 4th, 2021, Teams

Kaido Soosaar Tartu University

LIFE OrgBalt, LIFE18 CCM/LV/001158

EU LIFE Programme project "Demonstration of climate change mitigation potential of nutrients rich organic soils in Baltic States and Finland"

Latvia University of Life Sciences and Technologies

GREIFSWALD MIRE CENTRE

Content

WG measurements activities

- How we work (subgroups)
- Measurements protocols
- Sites establishment
- Measurements of GHG, biomass, environmental parameters
- Raw data storage

Formation of subgroup

Work package	Subgroup leader	Participant	
1) Site preparations	Jyrki Jauhiainen	FI: Jyrki J, EE: Kaido S	LV: Andis L, Mārtiņš V LI: Egidijus V.
2) Heterotrophic CO ₂ flux monitoring	Päivi Mäkiranta	FI: Päivi M EE: Ain K, Kaido S	LV: Andis L, Mārtiņš V LI: Dovilė Č, Egidijus V.
3) Transparent chamber measurements (CO ₂)	Kaido Soosaar	FI: Sanna S, Saara L EE: Ain K	LV: Andis L, Mārtiņš V LI: Egidijus V
4) Static dark chamber monitoring (incl. CH ₄ & N ₂ O)	Ain Kull	FI: Päivi M EE: Thomas S	LV: Andis L, Mārtiņš V LI: Dovilė Č, Egidijus V.
5) Meteorological parameters	Thomas Schindler	Fi: Päivi M EE: Kaido S	LV: Mārtiņš V LI: Dovilė Č
6) Water & soil, litter sampling	Mārtiņš Vanags-Duka	Fl: Timo P EE: Ain Kull	LV: Aldis B LI: Kęstutis A.
7) Litter production and decomposition belowground	Raija Laiho	FI: Tuula L EE: Ivika O	LV: Andis L, Mārtiņš V LI: Dovilė Č
8) Biomass production aboveground	Andis Lazdiņš	FI: Timo P EE: Ivika O	LV: Mārtiņš V LI: Olgirda B., Vaiva K
9) Data management (codes and storage)	Aldis Butlers	FI: Jyrki J EE: Kaido S	LV: Mārtiņš V LI: Vaiva K
10) Microbiology (New – to be formed ASAP)	Jyrki Jauhiainen	Fl: Hannu F, Krista P EE: Mikk E	LV: LI:
11) FTIR (New– to be formed ASAP)	Jyrki Jauhiainen	FI: Jyrki J FF: Ain K	LV: Aldis B LI: Dovile C

Field protocols

1st step: to harmonize the field measurements technique and 2 field protocols have been developed:

- 1) Biomass and litter decomposition measurement protocols
- 2) Flux and Environmental data protocols

Supportive activities:

- Field Calibration seminar in Tartu 29-30.6.2020
- Workshop about harmonization of field measurements in Kaunas 25-26.08.20
- Many meetings and emails

Biomass and litter decomposition measurement protocols draft 1		
Content		
Summary	1	
Schedule of biomass and biomass production & decomposition studies	2	
Vegetation biomass (Kestutis A. et al.)	2	
Tree stand biomass and biomass production (incl. coarse root)	2	
Ground vegetation biomass	2	
Ground vegetation biomass production	3	
Annual herbaceous ground vegetation biomass production	3	
Perennial ground vegetation biomass production	3	
Moss biomass production	3	
Ground vegetation coverage (optional)	5	
Litter production and decomposition (Raija L. et al.)	5	
Aboveground litter production	6	
Annual tree mortality	6	
Production of aboveground tree litter	6	
Production of aboveground litter of vascular ground vegetation	6	
Production of moss litter	7	
Aboveground litter decomposition	7	
Belowground biomass, biomass production, litter production and litter decomposition	.9	
Fine root biomass	9	
Fine-root production	10	

nd"

Soil GHG balance monitoring method harmonization in L	TPP	
OrgBalt	u.F.	
Content		
Introduction		
Contemporary methods applied to greenhouse an applied to	3	
Work procedures - site preparations (heiki Last 4)	5	
Selection locations for the plot and sub-los-	6	
Plot structure	6	
GHG monitoring point- and sublot locations	7	
Duckboards	8	
Heterotrophic respiration monitoring point setue	9	
Monitoring point setup for CH48N2O monitoring	11	
Installations for water and temperature monitoria	13	
Summary - actions and tools needed in plat man	13	
Actions in plot preparations	16	
Tools and materials needed	16	
Hold work	17	
scheduling GHG monitoring over time (P3iv) M Kana	18	
Maniforing soil heterotrophic CO ₂ fluxes (Parid Manif	18	
Net	19	
Temperature (Kaido S et al.)	22	
P01 Col.	26	
PD6 Soll information	30	
and the spectroscopy tests	31	
	33	

Establishment of sites

By the end of January 2021 all the study sites have been selected and prepared for the field measurements.

Establishment of sites

By the end of January 2021 all the study sites have been selected and prepared for the field measurements.

Ecosystem C and N balance

Figure 1. CO₂, CH₄, and N₂O fluxes and mass transfer components (arrows indicate flux/transfer direction) contributing to soil C-stock changes in a forest ecosystem on drained organic soil (as in IPCC, 2014), modified from Jauhiainen et al. (2019).

Basic scheme of the study site

In addition, periodically soil and water samples are taken for the chemical analyzes!

Gaseous fluxes - $CH_4 \& N_2O$ (& winter CO_2) fluxes Monitoring with closed static chamber method: 24 months (2021-2022)

Measurements:

- In Finland: May 2020
- In Estonia and Latvia: Jan 2021
- In Lithuania: Feb 2021
 Frequency (minimum)
- Winter: once per month
- Vegetation period: once every three weeks

Gaseous fluxes – heterotrophic CO₂ flux

Monitoring soil heterotrophic CO₂ fluxes on forest floor: 2 vegetation periods (2021-2022)

Gaseous fluxes – heterotrophic CO₂ flux

Monitoring soil heterotrophic CO_2 fluxes on forest floor: 2 vegetation periods (2021-2022)

Dynamic closed chamber method (EGM5(4)/Licor analyzer) Measurements :

- Finland: spring 2020
- In Estonia, Latvia and Lithuania: spring 2021 Frequency (minimum):
- during the vegetation period once every three weeks

Gaseous fluxes - NEE from non-forested sites

NEE measurements from non-forested sites with transparent chamber: 2 years

Dynamic closed chamber method (EGM5(4) analyzer)

Measurements :

 In Estonia, Latvia and Lithuania: spring 2021

Frequency (minimum):

 during the vegetation period once every three weeks

C/N input - Annual litter production in forest ecosystems

Annual litter production will be **calculated as the sum of aboveground litter of tree stand, vascular ground vegetation and mosses and belowground litter of roots and rhizomes.**

ABOVEGROUND LITTER OF TREE STAND

• Fine woody litter (twigs, branches)

Stand foliar and cone litter

C/N input - annual litter production

Annual litter production will be calculated as the sum of **aboveground litter** of tree stand, vascular ground vegetation and **mosses** and belowground litter of roots and rhizomes.

Moss biomass production, which is assumed to equal litter production, is measured with square shaped nets (each about 20 cm x 20 cm). Will be placed on patches of three most common moss species or moss patch types (five nets per species/patch type) at each site in the autumn of the first GHG monitoring year.

C/N input - annual litter production

Annual litter production will be calculated as the sum of **aboveground litter of** tree stand, **vascular ground vegetation** and mosses and **belowground litter of roots and rhizomes**.

- Ground vegetation biomass is harvested from six 30 x 30 cm (area = 900 cm2) areas per site, two at each GHG measurement transect. Biomass samples will be harvested during the maximum biomass in July-August.
- Fine-root production is estimated using the ingrowth-core method for peat soils. The amount of ingrown roots represents fine-root production over the incubation period, which will be generalized into annual production.

Sampling protocols

The avoid losses and harmonize the results several sampling protocols have been developed.

Site ID: EEC1101			Date and ti	ime:
Person name(s):				
Weather conditions	2			
description				
Air temp on site				
Soil Temp:	D	Α	В	С
10 cm				
20 cm				
30 cm				
40 cm				
Soil moisture (5cm)				
WL manual (cm):				
Tube insight				
Tube outsight				
WL auto (B)				
Snow depth (cm)				
Chamber volume change				
(filled with snow or water				
(chamber volume and				
minus volume filled with				
snow/water)				
Vegetation description				
(harvesting):				
Equipm. Used (deviation fro	om standard i	nstrumentatio	on):	

Remarks comments (e.g. disturbances caused by animals/trespassers/weather; deviations from standard monitoring plan, use of extensions):

A STATE	
3.	
SIL AVA	

Latvian State Forest Res	earch Institute "SILAVA"
Fore	st environment laboratory
Riga stre	et 111, Salaspils, LV - 2169

VL_55 Soils sampling protocol

	Sample code : OrgBalt		
a 11 1	(Specified in testing application)		
Sampling plan	Refference to sampling plan:		
	Person responsible:		
~ · · · · ·		& analyses	
		z kit	
Latvian S	State Forest Research Institute "SILAVA"	nsulation 🗆	Other:
	Forest environment laboratory	·	
	Riga street 111, Salaspils, LV - 2169		

VL_51 Water sampling protocol

	Sample code : Or	gBalt			
Sampling plan	Reference to same	aling plan:			
	Demon company	ai ai		š	Date and tin
	Ferson responsion	e.		1 40 40 50	
Sampling method		M07 Periodic water sampling &	analyses	7-40, 40-30	
Identification of equipment		Water sampling kit			
Transportation conditions	Thermal box \Box	Box without thermal insulation \Box	Other:		
Atypical environmental conditions, which may affect the sample	No 🗆	Observation:			
Deviations*	No 🗆	Yes:			
Sampler	Name Surname:				
Deviations, additions or exceptions to th	e sampling method a	nd sampling plan			

ple iden	tification	S	ample iden	tification
ibplot	Date and time	Site ID	Subplot	Date and time
	ple ider bplot	ple identification bplot Date and time	ple identification S bplot Date and time Site ID	pleidentification Sample identification bplot Date and time Site ID Subplot

Fails: VL_51_udens_nem_prot.docx Versija: 02	Water sampling protocol

5	Date and time
-40, 40-50	

81	1	8
ж.		8

Raw data storage

- Raw data will be stored in LIFE OrgBalt SharePoint (accessible for all the partners)
- All the activities (soil sampling, water sampling, etc.) will be coded, so we know exactly from where and what has been measured.
- However, the final format of the data storage is under process
- To keep everybody updated, our working group helds monthly meetings where we cover all the needed aspects.

CISER DrgBalt Private group		
♀ Search	+ New \checkmark $\overline{\uparrow}$ Upload \lor \boxplus Edit in grid view 🖻 S	ha
Home		
Conversations	Documents > WG Measurements	
Documents	\square Name \vee	Ν
Shared with us	Data storage	Д
Notebook	Field protocols from Silava	Д
Pages	OrgBalt measurements protocol	le
Site contents	OrgBalt sites	le
Recycle bin	WG Measurements meetings	le
Edit	Auxiliary data recorded during each site visi	Ji
	LIFE_Field _protocol_template.docx	k

The project "Demonstration of climate change mitigation potential of nutrients rich organic soils in Baltic States and Finland" (LIFE OrgBalt, LIFE18 CCM/LV/001158) has received funding from the LIFE Programme of the European Union and the State Regional Development Agency of Latvia.

The information reflects only the LIFE OrgBalt project beneficiaries' view and the European Commission's Executive Agency for Small and Medium-sized Enterprises is not responsible for any use that may be made of the information contained therein.

Latvia University of Life Sciences and Technologies

GREIFSWALD MIRE CENTRE