

GREENHOUSE GAS EMISSIONS FROM DRAINED HEMIBOREAL PEATLAND FOREST SOILS IN ESTONIA

Muhammad Kamil Sardar Ali, Thomas Schindler, Hanna Vahter, Ain Kull, Ülo Mander, Kaido Soosaar

Department of Geography, Institute of Ecology & Earth Sciences, University of Tartu, Estonia

INTRODUCTION

Peatlands are the largest long-term carbon (C) store, covering only ~3% of the earth's surface yet account for approximately one-third of all carbon storage, and therefore important for the global C cycle. Water saturation is a key control on oxygen availability in peat and on plant community composition and excess soil wetness is necessary for long-term peat development.

Northern peatlands constitute most of the global peatland area and boreal regions have historically experienced long winter & wet summer seasons. Changes in winter weather could have a cumulative effect on peat hydrology and in extremely dry periods the stored carbon losses to the atmosphere due to intensified peat decomposition.

Peatlands have been drained for forestry (ca. ~15 Mha) in the temperate and boreal regions for production of tree biomass. Drainage has fundamental impacts on the hydrological and biogeochemical processes of peatlands:

Our preliminary results shows that all drained forest sites were annual emitters of CO_2 and N_2O while consumed CH_4 during the first year Jan- Dec 2021.

- \bullet The annual mean CO₂ emission (heterotrophic respiration) was 716 \pm 47.9 mg m⁻² h⁻¹, and highest during the summer with temporal variability associated with temperature and soil water content within site.
- ✤ Most of the sites had relatively high N_2O fluxes (mean = 48.5 ± 7 µg m⁻² h⁻¹),

RESULTS

- Drainage promotes the oxidation of the stored organic material and enhance decomposition turning peatland from C sink into emitter of CO_2 .
- Mineralization of nutrients from peat is increased, and emission of N_2O occur due to favorable conditions for nitrification.
- Lower water levels and soil water content in drained organic soils lead to reduced CH_{4} emission, while oxidation may increase.

Moreover, any changes together with the predicted global warming may result in significant variation of GHG fluxes.

which were controlled by soil temperature and peaks in emission occurred during the spring (freezethaw) period.

 \diamond Overall forest soils were annual CH₁ sinks (mean = $-58.6 \pm 2.5 \ \mu g \ m^{-2} \ h^{-1}$), significantly correlated with and ground water levels in terms of spatial variation among the sites.

Fig. 1. Annual variation of GHG fluxes. Dots represent monthly mean of each study site

Fig. 2. Average CO_2 flux and relationship with soil temperature at 10 cm depth.

OBJECTIVES

Our aim is to determine the GHG fluxes and factors regulating the temporal and spatial variation in GHG fluxes at the soil surface in drained forested sites.

1) Downy Birch 2) Black Alder 3) Norway Spruce 4) Scots Pine

Forests drainage ditch

METHODS

We are conducting a two-year long study on drained nutrient-rich organic soils with different tree species and fen (wetland) as a reference site in central Estonia. GHGs exchange measured twice per month along with auxiliary soil and environmental parameters from Jan-2021 till date.

- \succ Manual static chamber method and GC analysis (CH₄ and N₂O)
- \succ Dynamic closed chamber with EGM (CO₂ heterotrophic respiration)
- \succ Soil temperature profile (10-20-30-40 cm) and soil moisture (5 cm)
- \succ Water chemical parameters (specific conductance, pH and O₂ conc.)
- \succ Automatic logger for ground water level, soil temperature, moisture (hourly)

Fig.3. Average N_2O flux and relationship with soil temperature at 5cm depth.

Fig.4. Average CH₄ flux and relationship with soil temperature and ground water level.

CONCLUSIONS

GHG fluxes have large seasonal and spatial variabilities.

Forestry drainage increased heterotrophic respiration in the soil. CO₂ emissions were similar across different forest species, the rates were increased with higher temperatures during the vegetation period.

Nutrient-rich soils produced high N₂O due to increased mineralization rates, the fluxes were controlled by soil temperature.

Drained forest soils consumed more CH_4 than fen as a result of aerated surface layer and CH₄ fluctuated with ground water level.

Furthermore, soil microbes, ground vegetation cover and litter horizon will be investigated as factors influencing soil atmospheric gas exchange in the future.

ACKNOWLEDGEMENT

"Demonstration of climate change mitigation potential of nutrients rich organic soils in Baltic States and Finland", (2019-2023, LIFE OrgBalt, LIFE18 274CCM/LV/001158).

kamil.sardar@ut.ee

10th International Symposium on Ecosystem Behavior **BIOGEOMON 2022**