Drainage impact on N₂O & CH₄ fluxes from grassland on a drained nutrient-rich organic soils – sites, steps and preliminary results

Hanna Vahter¹, Muhammad Kamil Sardar Ali¹, Thomas Schindler¹, Andis Lazdiņš², Ain Kull¹, Ieva Līcīte², Ülo Mander¹, Aldis Butlers², Kaido Soosaar¹

¹Department of Geography, Institute of Ecology & Earth Sciences, University of Tartu, 46 Vanemuise, EST-51014 Tartu, Estonia
²Latvian State Forest Research Institute "Silava", Rīgas iela 111, Salaspils, Salaspils pilsēta, LV-2169, Latvia

Contact: hanna.vahter@ut.ee

Introduction

Organic soils are one of the largest natural terrestrial carbon stores, mainly in boreal, temperate and tropical wet climate zones. These environments are deficient in oxygen; therefore, organic matter decomposes slowly and accumulates. In Europe, organic soils account for a very small proportion of the total utilized agricultural area (3%; 4.4 million hectares). However, as a common management practice, drainage turns those carbon-rich soils into a significant greenhouse gas (GHG) source. Drainage causes increased carbon dioxide (CO2) and nitrous oxide (N₂O) emissions due to increased soil mineralization. Methane (CH₄) emissions, on the other hand, are reduced compared to natural wetlands where no soil drainage and tillage are done. Land use, climate zone, soil nutrient status, and drainage status are closely linked to estimating GHG budgets from managed sites on organic soils

Drainage impact on GHG fluxes from grasslands and forests on drained nutrient-rich organic soils throughout two full-year is studied in hemiboreal Estonia (EE), Latvia (LV), and Lithuania from 2021. Results of the first full-year period of $N_2{\rm O}$ and CH_4 fluxes and environmental parameters from grasslands in EE and LV will be presented. Fluxes with different drainage statuses were determined on seven sites in four groups:

- (I) two on excessively drained fens soils;
- (II) two on moderately drained fens soil;
- (III) who or inicially grained for soil, (III) one or drained fens soil with increased groundwater levels; and for comparison (IV) two non-managed fens as reference sites.

The main objective of our study is to calculate a carbon (C) and nitrogen (N) budget further and adjust GHG emission factors for GHG from drained peatland grasslands in the Baltic countries.

Methodology 0 CH₄ and N₂O monitoring point; manual dark closed Heterotrophic ${\rm CO_2}$ monitoring point, cluster of three trenched points; dynamic chamber Litter collector on the ground (1 m2) Moss biomass net (if significant most Soil moisture monitoring: manual Soil T (°C) monitoring 10, 20, 30 & 40 cm; manua Ground vegetation monitoring Piezometer - WT, pH, SPC, EC, ORP, O2, BF Root ingrowth cores neter - WT; logger monitoring Duckboard Ditch Soil T (°C) monitoring 10 & 40 cm; logge Fig. 1. Study plot, enclosing three subplots for GHG and from Jauhiainen et al. (2019))

Nitrous oxide (N2O)

Results

Methane (CH₄)

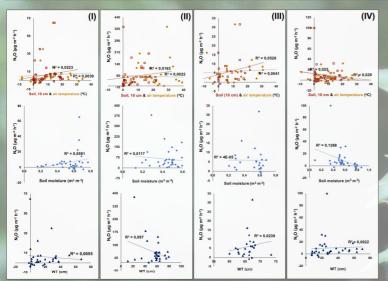


Fig. 2. N₂O flux dependence on environmental parameters (soil T in 10 cm, air T, soil moisture, WT) in the grasslands with different drainage statuses (I) excessively drained fens soils; (II) moderately drained fens soil; (III) drained fens soil with increased groundwater levels; (IV) non-managed fens as reference sites) during the measurement period Jan-Dec 2021

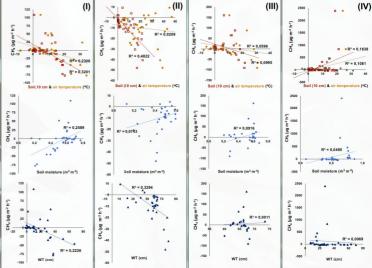


Fig. 3. CH_z flux dependence on environmental parameters (soil T in 10 cm, air T, soil moisture, WT) in the grasslands with different drainage statuses statuses (I) excessively drained ferns soil; (II) moderately drained ferns soil (III) drained ferns soil with increased groundwater levels; (IV) non-managed fens as reference sites) during the measurement period Jan-Dec 2021

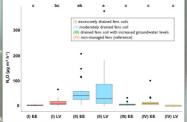


Fig. 4. N₂O variability and statistical parameters (median values,

Fig. 5. CH₄ variability and statistical parameters (median values

Conclusion

- High N₂O and CH₄ fluxes seasonal variability
- Drained grasslands (I, II) were annual CH_4 sinks (emissions varied from -77.7 to 108.88 μ g m $^{\rm 2}$ h $^{\rm 1}$), while fens soils with higher groundwater levels (III, IV) were a source of CH_4 (emissions varied from -90.54 to 2389.70 μ g m $^{\rm 2}$ h $^{\rm 1}$);
- All studied sites were annual emitters of N₂O (emissions varied from -2.45 to 379.31 µg m⁻² h⁻¹).
- Moderately drained soils (II) were the highest N₂O emitter (61.20 ± 12.15 μg m⁻² h⁻¹).

Next important steps in our study are the following:

- continue with more in-depth data
 - analysis (multicriteria);
 C and N budget
 - include heterotrophic CO₂ flux;
 - C and N content in above & below ground biomass;
 - o litter and biomass production

Acknowledgements

This research is supported by the LIFE program project "Demonstration of climate change mitigation potential of nutrients rich organic soils in the Baltic States and Finland", (2019-2023, LIFE OrgBalt, LIFE18 274CCM/LV/001158).