

Drainage Impact on Greenhouse Gas Emissions from Grasslands and Croplands on Nutrient-rich Organic Soils in Baltic Countries

Hanna Vahter 24.04.2023

hanna.vahter@ut.ee

Hanna Vahter¹, Muhammad Kamil Sardar Ali¹, Thomas Schindler¹, Andis Lazdiņš², Ain Kull¹, Ieva Līcīte², Ülo Mander¹, Aldis Butlers², Jyrki Jauhiainen³, Dovile Ciuldiene⁴, and Kaido Soosaar¹

- •¹University of Tartu, Tartu, Estonia
- •²Latvian State Forest Research Institute "Silava», Latvia
- •3Natural Resources Institute Finland, Luke, Finland
- •4Institute of Forestry, Lithuanian Research Centre for Agriculture and Forestry, Lithuania

Organic soils – one of the largest terrestrial carbon stores, mainly in boreal, temperate and tropical wet climate zones

• These environments are deficient in oxygen; therefore, organic matter decomposes slowly and accumulates

Drained nutrient-rich organic soils – one of the largest key sources of GHG emissions in the LULUCF sectors in Boreal and Temperate cool and moist climate regions in Europe

 Increased carbon dioxide (CO₂) and nitrous oxide (N₂O) emissions due to increased soil mineralization and reduced methane (CH₄) emissions compared to natural wetlands where no soil drainage and tillage are done INTERESTING FACTS

33.6 Mha

The total area of drainage-based, flooded and rewetted managed organic soils in the European Union (EU) is 33.6 million hectares (Mha) (7% of the EU area).*

25%

In the agricultural sector in Europe organic soils make only 3% (4.4 Mha) of the total agricultural area, but are responsible for 25% of all agricultural GHG emissions.*

61%

The LIFE OrgBalt project focuses on the most common group of organic soils – nutrient-rich drained soils in temperate climate zone which covers an area of approximately 21 Mha or 61% of organic soils in EU countries. 16 demonstration sites will be established and GHG fluxes will be monitored in 51 sites.

* European Environmental Agency (2020), EU GHG inventory 1990-2018, submission 27 May 2020

Material and methods – sites & steps

Study period: Jan. 2021–Dec. 2022

Sites

Groups	Site ID	Land use type	Organic layer depth	Water table regime	Water table
I group Drained cropland	01EE	Cropland	~35 cm	Drained site	~55 cm
	01LV		~30 cm		~60 cm
	01LT		~45 cm		~60 cm
II group Well drained grassland	02EE	Grassland	~45 cm	Drained site	~60 cm
	02LV		~50 cm		~60 cm
	02LT		~50 cm		~50 cm
III group Moderately drained grassland	03EE	Grassland	~35 cm	Drained site	~25 cm
	03LV		~35 cm		~25 cm
IV group	07EE	Grassland	>1 m	Drained site	~30 cm
Poorly drained grassland	07LT		>2 m		~10 cm
V group Floodplain fen	10EE	Floodplain fen	>2 m	Naturally wet	~40 cm
VI group	10LV	Fen	>2 m	Naturally wet	~15 cm
Fen	10LT		>2 m		~10 cm

GHG measurements

 \bigcirc \bigcirc CH₄, N₂O - manual dark chamber method; NEE - transparent chamber method

Heterotrophic CO₂ - cluster of three trenched points; analyzer with dynamic dark chamber

GHG measurements

) () CH₄, N₂O - manual dark chamber method; NEE - transparent chamber method

Heterotrophic CO₂ - cluster of three trenched points; analyzer with dynamic dark chamber

Environmental parameters - automatic

- ▼ Soil T (°C) monitoring 10 & 40 cm; logger
- Piezometer water table (WT); logger
- PAR (photosynthetically active radiation)

CH₄, N₂O - manual dark chamber method; NEE - transparent chamber method Heterotrophic CO₂ - cluster of three trenched points; analyzer with dynamic dark chamber

PAR

Environmental parameters - manual

- Soil moisture
- Soil T (°C); 10, 20, 30 & 40 cm
- Soil bulk density; once per project)
- Soil chemical analysis (pH_{KCl} HNO₃ P, K, Ca, Mg, Biomass sampling once per project
- C_{tot}, N_{tot}, ash content); once per project
- Piezometer WT, pH, SPC, EC, ORP, O₂, BP
- & once a month water chemical analysis (pH, N_{tot}, NO₃, DOC, PO₄, K, Ca, Mg, NH₄)
- Ground vegetation biomass & aboveground litter production

Environmental parameters - automatic

₩ Soil T (°C) monitoring 10 & 40 cm; logger

Belowground biomass

Piezometer - WT; logger

(i) Boxplots showing the N₂O-N emission in groups with different water level. Median, 25–75 quartiles, minmax, and outliers are presented.

(j) Boxplots showing the CH₄-C emission in groups with different water level. Median, 25–75 quartiles, minmax, and outliers are presented.

-20 Jan, 21

Apr, 21

Jul, ²¹

Oct, 21

_{Jan}, 22

Apr, 22

Jul, ²²

Oct, 22

during the measurement period Jan. 2021–Dec. 2022 in Estonian study sites ((I) – cropland; (II)-(IV) – grasslands; (V) – floodplain fen).

Jan, 2021 Apr, 2021 Jul, 2021 Oct, 2021 Jan, 2022 Apr, 2022 Jul, 2022 Oct, 2022

Summary

- High seasonal variability of N₂O and CH₄ fluxes;
- Croplands (I) and two grassland groups (II; III) were annual CH₄ sinks (emissions varied from -58.27 to 81.66 μ g m⁻² h⁻¹),
 - fens soils with higher groundwater levels were a source of CH_4 (emissions varied up to 45 584.60 µg m⁻² h⁻¹);
- All studied sites were annual emitters of N_2O (emissions varied from -2.91 to 3789.57 $\mu g~m^{-2}~h^{-1});$
 - Cropland (I) soils were the highest N₂O emitters (average emission 75.38±22.54 μg m $^{-2}$ h $^{-1}$).

C & N in vegetation

Heterotrophic respiration by soil organisms

Next important steps

- Continue with more in-depth data analysis (multicriteria; vegetation & non-vegetation periods etc.);
- Calculate GHG emission factors for GHG from drained peatland grasslands;
- C and N budget:
 - include heterotrophic CO₂ flux;
 - annual litter and biomass production;
 - C and N content in above & below ground biomass;
 - Include other inputs & outputs (etc fertilizer, dry deposition).

Thank you!

hanna.vahter@ut.ee