

Greenhouse Gas Fluxes From Nutrient-rich Organic In Estonia and Latvia

MUHAMMAD KAMIL SARDAR ALI

Thomas Schindler, Ain Kull, Hanna Vahter, Ülo Mander, and Kaido Soosaar

Department of Geography, Institute of Ecology & Earth Sciences, University of Tartu, Estonia

Investing in your future

European Union European Regional Development Fund

Background

- Peatlands occupy 4 million km² store >25% global soil carbon
- C-reservoir are affected anthropogenic activities i.e., peat extraction, drainage
- ~10% global peatland area drained (0.3% of global area)
- Accounting for ~5% of anthropogenic GHG emissions.

Global distribution of peatlands

CC: Levi Westerveld/GRID-Arendal, CC BY-ND

Peatlands drained for cultivation and peat extraction

- Increased peat mineralization
- Water level fluctuation
- GHG emissions

modified from Jauhiainen et al. (2019)

Research question:

- How drainage will impact
 GHG emissions forest land on nutrient-rich organic soils
- C and N budget
- Emission factors

Study Areas

- Estonia and Latvia (hemiboreal zone)
- Drained nutrient-rich organic soil

Mature forest types:

(Downy birch, Norway spruce, Scots pine, black alder)

Study Sites

Estonia; 5	Dominant	Common		Peat depth	Water table	
Latvia; 10	species	name, S	Site ID	(cm)	regime	Stand age
	Black alder	Karevere	EEC108	20-30cm	Drained site	Mature stand
		Birzgale	LVC109	>50 cm	Drained (Wet)	mature stand
UUSIMAA						
Helsinki CITY	Birch	Laeva	EEC106	60-70 cm	Drained site	20-40
ST. PETER		Ulila	EEC109	50-70 cm	Drained site	younger stand
ESTONIA		S-99-9	LVC108	>50 cm	Drained site	24
		Pļaviņas	LVC115	>50 cm	Drained site	mature stand
		Smiltenes	5			
		Melnalkš				
		ņı	LVC111	100 CM+	Drained (wet)	mature stand
viaitu y						
Pskov		Laeva	EEC104	>50cm	Drained site	43-65
		Ropaži	LVC104	30+ cm	Drained site	mature stand
in it	Spruce	Viesīte			Ducined site	
РЅКОУ	·	otrais	LVC106	40 cm	Drained site	mature stand
		dala	I VC112	>50 cm	Drained site	48
		uuļu	LVCIIJ	> 50 cm	Dramed Site	40
	Pine				Ducined cite	
Šiauliai Daugavpils		Olaina		>50011	Drained site	40-00
				521011 60.cm	Drained site	1/1
		5-193-2/			Drained (Wot)	141 mature stand
she i to		ICCdVd	LVCIIO	21 (III	Diameu (Wet)	mature Stand

Site description

- Dark Chamber method: CH₄ & N₂O flux monitoring points, n = 6
- Dynamic Chamber: CO₂ Heterotrophic respiration

Methods

GHG flux measurements: twice per month, Jan 2021 – Dec 2022

- Manual static closed dark chamber method for CH₄, N₂O, analysis by GC
- Dynamic chamber (with EGM-5) for heterotrophic respiration (CO_2)
- Soil chemical analysis

Auxiliary parameters: Tsoil, Tair, soil water content, soil moisture, water chemistry

Heterotrophic respiration (CO_2) data is not presented

Forest subsites Estonia

 $CH_4 (\mu \ g \ m^{-1} \ h^{-1})$

● EE ▲ LV

Time series of CH_4 , N_2O fluxes and Ground water level (2021- 2022)

Time series of CH_4 , N₂O fluxes and ground water level (2021-2022)

• EE ▲ LV

Time series of CH_4 , N_2O fluxes and ground water level (2021- 2022)

EE
 LV

Time series of CH_4 , N_2O fluxes and ground water level (2021-2022)

• EE 🔺 LV

Annual CH₄ fluxes and Ground water level (m)

10

5

0

CH4

Relationship of CH₄ flux

Gas fluxes and soil parameters

- Soil temperature (^OC)
 - 5, 10, 20, 30, 40 cm
- Soil moisture (m³ m⁻³)
- Water table depth (m)
- Water parameters
 - O_2 content (%)
 - pH
 - Conductivity dsm⁻¹

Gas fluxes and soil chemistry (10 cm)

- Organic layer depth
- Soil pH
- Carbon
- Nitrogen
- C/N ratio
- Calcium
- Magnesium
- Potassium
- Ash content
- Phosphorous

Emission factors calculated from different forest species

Dominant	Common		Peat depth	Water table		
species	name, Site ID		(cm)	regime	N2O (kg ha-1 yr-1)	CH4 (kg ha-1 yr-1)
Black alder	Karevere	EEC108	20-30CM	Drained site	4.58	-5.01
	Birzgale	LVC109	>50 cm	Drained (Wet)	3.02	1.45
Birch	Laeva	EEC106	60-70 cm	Drained site	4.86	-5.12
	Ulila	EEC109	50-70 cm	Drained site	2.51	-3.91
	S-99-9	LVC108	>50 cm	Drained site	1.76	8.36
	Pļaviņas	LVC115	>50 cm	Drained site	33.90	-8.60
	Smiltenes Melnalkšņi	LVC111	100 CM+	Drained (Wet)	6.28	48.12
Spruce	Laeva	EEC104	>50cm	Drained site	6.03	-7.54
	Ropaži	LVC104	30+ cm	Drained site	2.97	-6.39
	Viesīte otrais	LVC106	40 cm	Drained site	9.39	-5.60
	Tālākā daļa	LVC113	>50 cm	Drained site	5.04	-7.29
Pine	Laeva	EEC105	>50cm	Drained site	6.99	-5.34
	Olaine	LVC107	>21CM	Drained site	0.62	-6.09
	S-193-27	LVC116	6o cm	Drained site	0.02	15.58
	lecava	LVC110	>21 CM	Drained (Wet)	1.76	-4.78

IPCC (Tier1) 2.5 (-0.6, -5.7) 8.8 (-1.8, -19.2)

Preliminary Conclusion

- Drained organic soils act as soil CH_4 sinks, fluctuated by ground water level.
- High emissions of CH4 occurs under anaerobic conditions, when the ground water level is close to the surface.
 - N2O fluxes are controlled by soil nutrient status
- High emission of N_2O occurred during the spring-thaw period as well during summer in some sites.
- Furthermore, detailed physiochemical soil and water parameters, peat characteristics, and tree litter fall will be investigated as factors influencing soil atmospheric gas exchange.

Thank you

Kamil.sardar@ut.ee