

Simulation tool – opportunity to develop knowledge-based policy

Kristīne Valujeva, Aleksejs Nipers Latvia University of Life Sciences and Technologies

LIFE OrgBalt, LIFE18 CCM/LV/001158

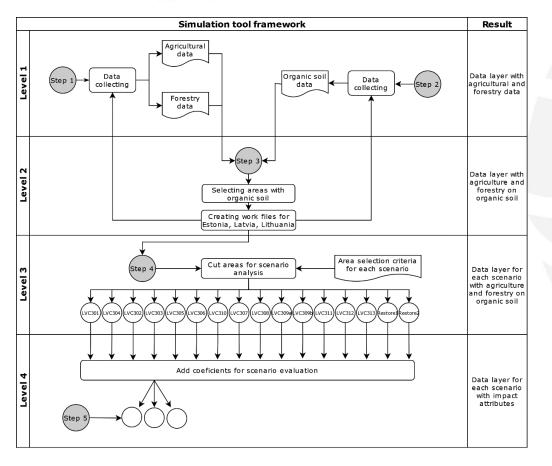
EU LIFE Programme project

"Demonstration of climate change mitigation potential of nutrients rich organic soils in Baltic States and Finland"



EU LIFE Programme project "Demonstration of climate change mitigation potential of nutrients rich organic soils in Baltic States and Finland"

SCENARIO ANALYSIS



SIMULATION TOOL

- Simulation tool is data-based tool for policy planning and decision making at regional and national level.
- It evaluates the impact of climate change mitigation measures on socioeconomic indicators and GHG emission reduction at national level for three Baltic States.
- Results of Simulation tool also shows possible spatial location of the GHG emission reduction measures.

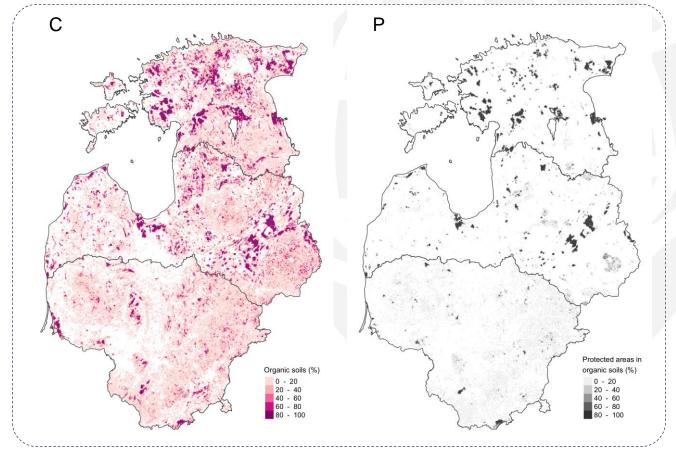
Step 1: to collect agricultural and forestry data for the creation of a detailed land use data layer for each polygon.

Step 2: to collect data for organic soil.


Step 3: to generate working files for three Baltic States including only those agricultural and forestry areas located on organic soil

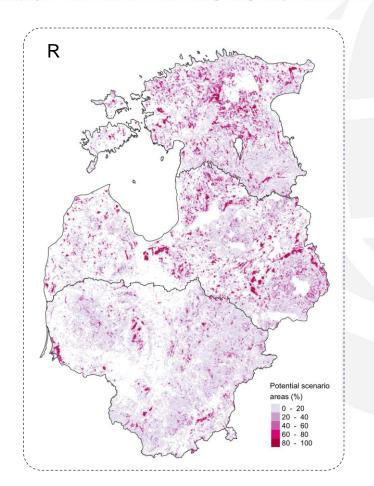
Step 4: to cut area from generated working files for each scenario based on predefined area selection criteria.

Step 5: impact assessment on profit, employment, and GHG emissions after implementation of scenarios.



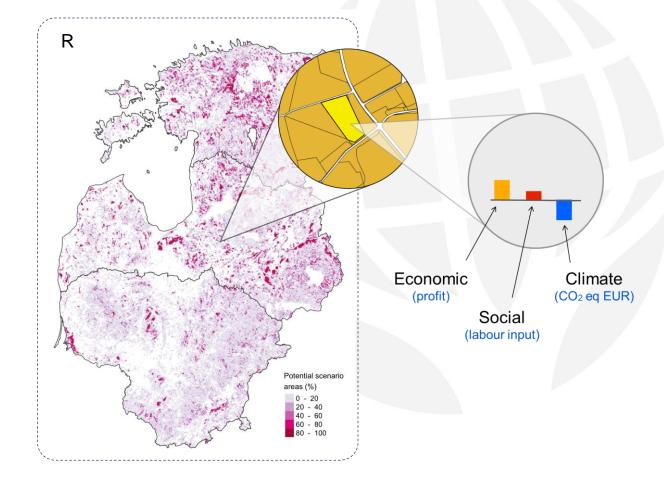
Agricultural and forest land areas ...

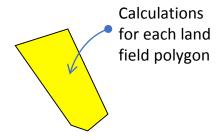
... are overlapped with organic land areas and protected areas


For organic soils is used data from "Paludiculture in the Baltic states" project financed by the European Climate Initiative (EUKI)

THE RESULT:

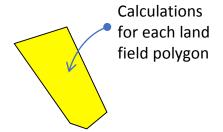
Agricultural and forest land layer on organic soils, except protected areas


$$R = (A + F) \cap (C - P)$$


THE RESULT:

Agricultural and forest land layer on organic soils, except protected areas

 $R = (A + F) \cap (C - P)$

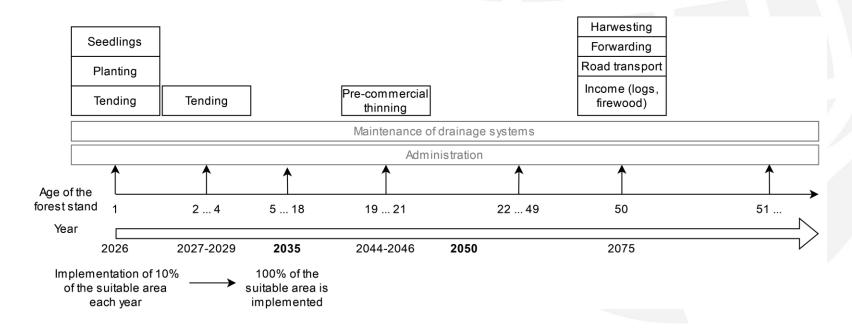


	BEFORE	AFTER	DIFFERENCE
Net GHG emissions (CO ₂ eq)			OrgBalt
Profit (eur)	algorithms	algorithms	
Employment (hours)	algorithms	algorithms	

Evaluation for 2030

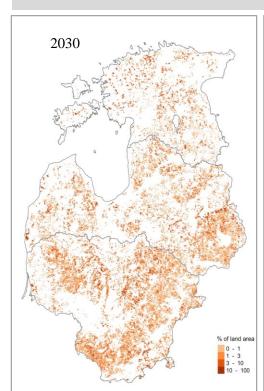
Evaluation for 2050

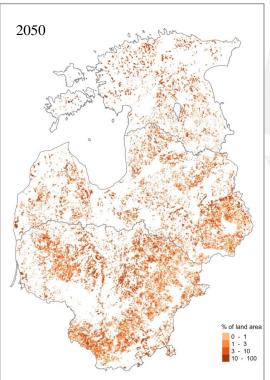
	,		,
	BEFORE	AFTER	DIFFERENCE
Net GHG emissions (CO ₂ eq)			OrgBalt
Profit (eur)	algorithms	algorithms	
Employment (hours)	algorithms	algorithms	

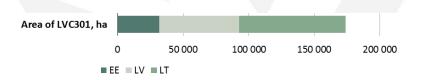

	Labor input (h/ha)			
	Large farms	Medium farms	Small farms	Mikro farms
Grains, oilseeds, pulses	15	18	24	32
Potatoes	72	165	223	315
Vegetables, strawberries, flowers	284	370	545	585
Perennial plantations	380	450	550	550
Other crops	90	115	160	225
Fallow land	6	7	12	22
Grasslands	16	19	25	34
Meadows and pastures	6	8	11	23

Evaluation for 2030

Evaluation for 2050

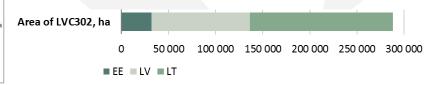



FOREST LAND

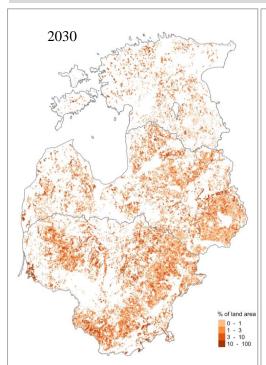


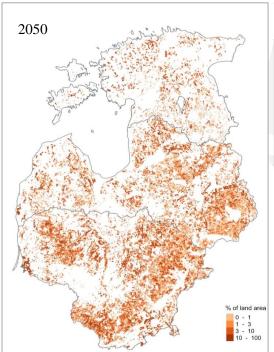
LVC301: CONVERSION OF CROPLAND TO GRASSLAND

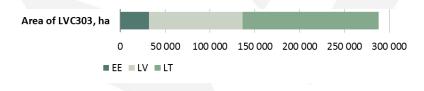
Description	Area selection criteria	Land use after implementation
Cropland with nutrient-rich organic soil conversion to grassland. Increased carbon stock in soil and below-ground biomass, reduced risks of nutrient leaching and soil erosion.	Organic soil, arable land without perennial plantations	Grassland



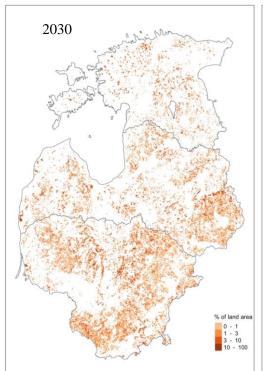
LVC302: CONVENTIONAL AFFORESTATION (SPRUCE)

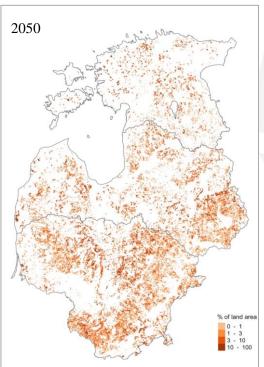


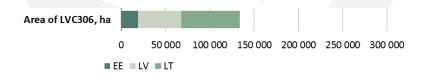

Description	Area selection criteria	Land use after implementation
Demonstration of the reduction of		
GHG emissions from area		
previously used as pasture or		
perennial grassland for fodder		
production by afforestation with		
spruce. Reduced GHG emissions	Organic soil,	
from soil. Accumulation of CO ₂ in	grassland, perennial	
living and dead biomass, soil and	grassland, arable	Forest stand with spruce
litter and replacement effect of	land without	
forest biofuel and harvested wood	perennial plantations	
products. Shorter rotation and more		
intensified management ensures		
higher yield and replacement effect,		
as well as reduces carbon losses due		
to root rot and other disturbances.	× .	



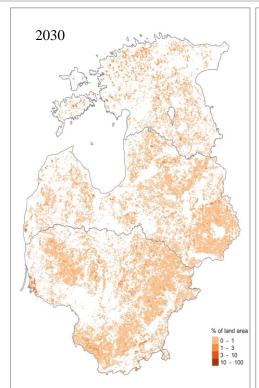
LVC303: INTRODUCTION OF FOREST PALUDICULTURE (DECIDIOUS TREES)

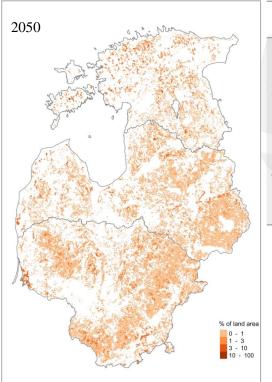


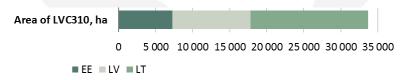

Description	Area selection criteria	Land use after implementation
Reduction of GHG emissions by establishing forest paludiculture (dominant species - black alder and birch) in grassland with nutrientrich organic soil and increased groundwater level.	Organic soil, grassland, perennial grassland, arable land without perennial plantations	and birch



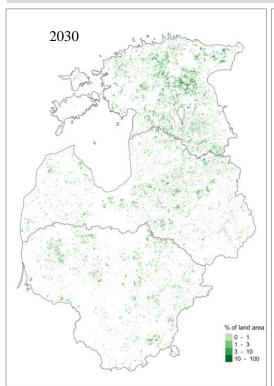
LVC306: AGROFORESTRY – FAST GROWING TREES AND GRASS

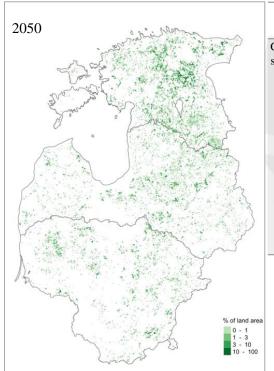


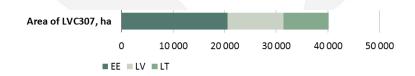

Description	Area selection criteria	Land use after implementation
GHG emissions reduction through transformation of cropland to tree plantation. Projected reduction of GHG emissions is related to the decrease of N ₂ O and CO ₂ emissions from soil as well as to the increase of CO ₂ removals in living biomass and other carbon pools.	Organic soil, arable land without perennial grassland and perennial plantations	Forest stand with poplar



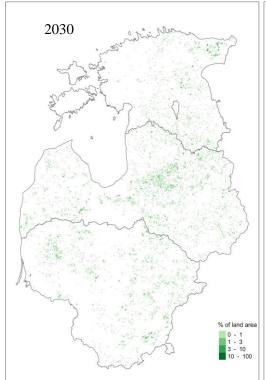
LVC310: FAST GROWING SPECIES IN RIPARIAN BUFFER ZONES

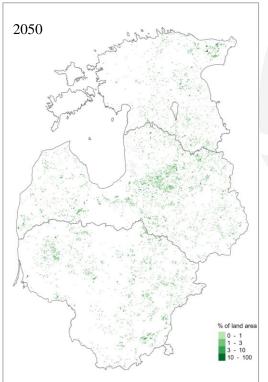


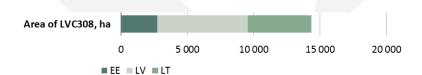

Description	Area selection criteria	Land use after implementation	
GHG emissions reduction through transformation of strip areas along drainage diches in cropland to tree plantation areas that avoid nutrient leaching and increase carbon removals in living biomass and other carbon pools. Projected reduction of GHG emissions is related to the decrease of N ₂ O and CO ₂ emissions from soil as well as to the increase of CO ₂ removals in living biomass and other carbon pools.	Organic soil, agricultural land, buffer zone at least 9.5 m wide from the edge of the ditch	Forest plantation with poplar and willow	



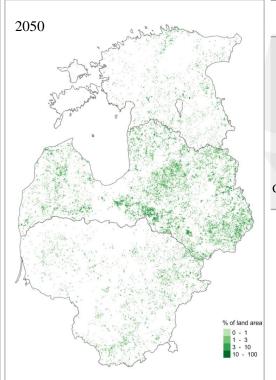
LVC307: APPLICATION OF WOOD ASH IN SPRUCE TREE STANDS

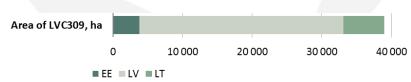



Description	Area selection criteria	Land use after implementation
GHG emissions reduction in spruce stands on organic soils and lowered ground water table by implementation of wood ash after thinning thus enhancing stand growing conditions. Projected reduction of GHG emissions is related to groundwater level reduction, related to increase in growing stock increment and increased water amount used for transpiration processes – thus decreasing CH ₄ emissions and increasing CO ₂ removals in living biomass.	Organic soil, forest stand classification Kv, Km, Ks, Kp, II- IV site index, spruce at least 50%, age at least 20 years	Forest stand with spruce

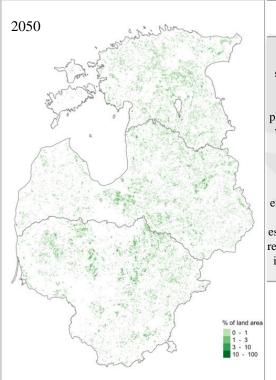


LVC308: CONTINUOUS FOREST IN SPRUCE STAND


Description	Area selection criteria	Land use after implementation
GHG emissions reduction in spruce stand by replacing clear felling with selective felling. Projected reduction of GHG emissions is related to the increase of groundwater level in an alternative – clear felling scenario. Increase of groundwater level is associated with significant increase of CH ₄ . In the case of selective felling increase of groundwater levels should be smaller thus also increase of GHG emissions is smaller.		Forest stand with spruce

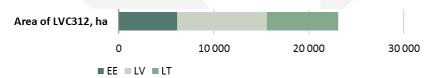


LVC309: FOREST REGENERATION WITH BLACK ALDER AND BIRCH IN NON-DRAINED ORGANIC SOIL

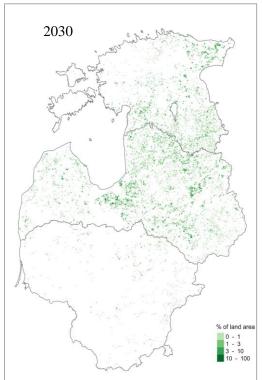

Description	Area selection criteria	Land use after implementation
GHG emissions reduction in black alder and birch stand by using genetically selected planting material and improving hydrological regime. Projected reduction of GHG emissions is related to groundwater level stabilizing during forest regeneration phase and better growth conditions and increased CO ₂ removals in forest biomass and other carbon stocks.	main specie black alder, birch, age 71 years, I-III site index	Forest stand with black alder and birch
other carbon stocks.		

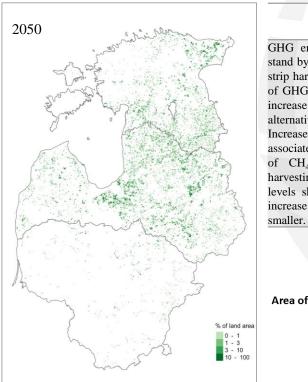
LVC311: RIPARIAN BUFFER ZONE IN FOREST LAND PLANTED WITH BLACK ALDER

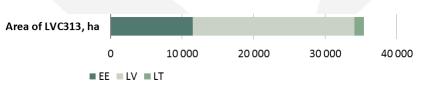
Description	Area selection criteria	Land use after implementation
GHG emissions reduction in deciduous tree stands on organic soils with increased ground water table by enhancing tree growing conditions, using high quality planting material and preparing soil with mounding method including establishing of deep furrows for excess surface water drainage in spring time and after rainfalls. Projected reduction of GHG emissions is related to groundwater level reduction, related to establishment of deep furrows - as a result decreasing CH ₄ emissions and increasing CO ₂ removals in living biomass.	Organic soil, forest stand classification Ks, Kp, buffer zones of reclamation systems in forest lands	Forest stand with black alder



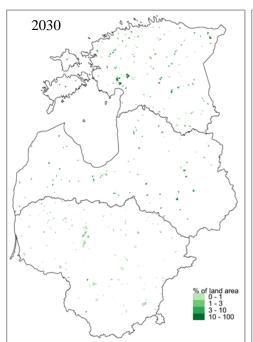
LVC312: FOREST REGENERATION WITH PINE IN NON-DRAINED ORGANIC SOIL

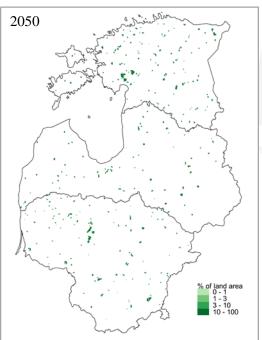


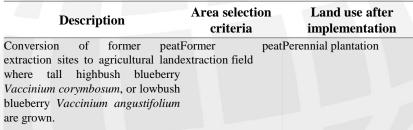

Area selection Land use after **Description** criteria implementation GHG emissions reduction inOrganic soil, forestForest stand with pine coniferous stands on organic soilsstand classification and increased ground water table byPv, Nd, Db, main application of forest regenerationspecies birch (age with high quality coniferous 71, II-V site index), planting material and by using aspen (age 41, site mounding method for soilindex II-V), black preparation. Projected reduction ofalder (age 71, II-V GHG emissions is related tosite index), groundwater level reduction, related to establishment of deep furrows as a result decreasing CH₄ emissions and increasing CO2 removals in living biomass because of enhanced forest growing conditions.

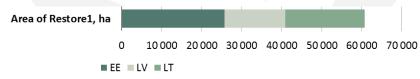


LVC313: STRIP HARVESTING IN PINE STAND

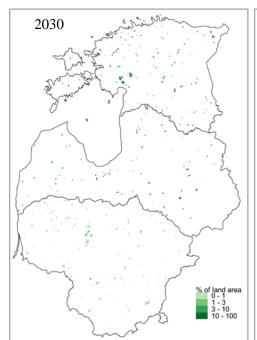


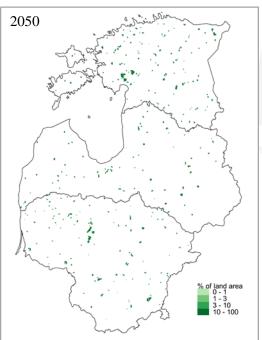

Area selection Land use after Description criteria implementation GHG emissions reduction in pineOrganic soil, forestForest stand with pine stand by replacing clear felling withstand classification strip harvesting. Projected reductionKv, Km, Ks, Kp, of GHG emissions is related to themain specie pine, increase of groundwater level in anage 101 years, I-III alternative - clear felling scenario.site index Increase of groundwater level is associated with significant increase of CH₄. In the case of strip harvesting increase of groundwater levels should be smaller thus also increase of GHG emissions is

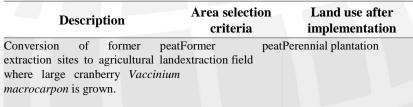


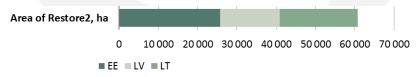


RESTORE1: GROWING BLUEBERRIES IN WETLANDS

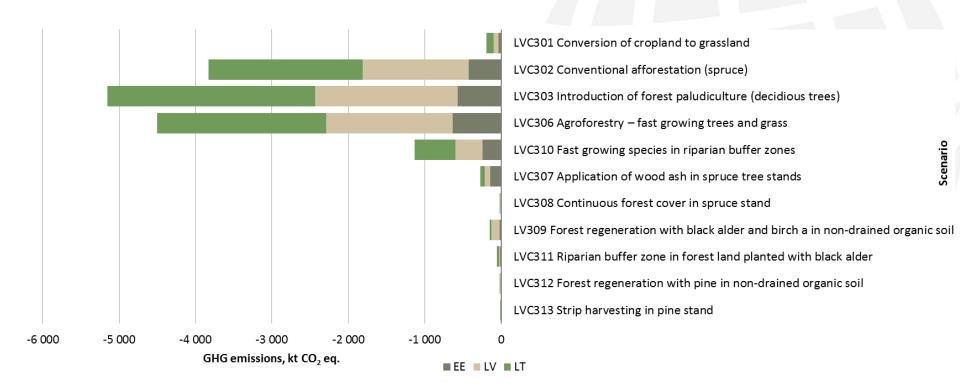


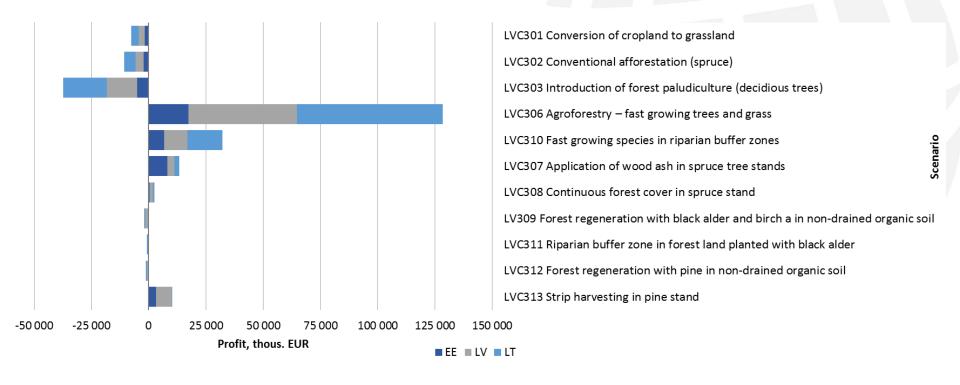


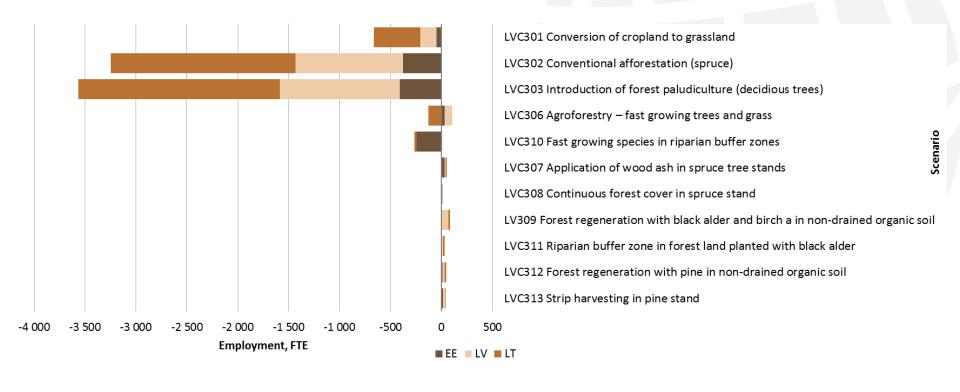




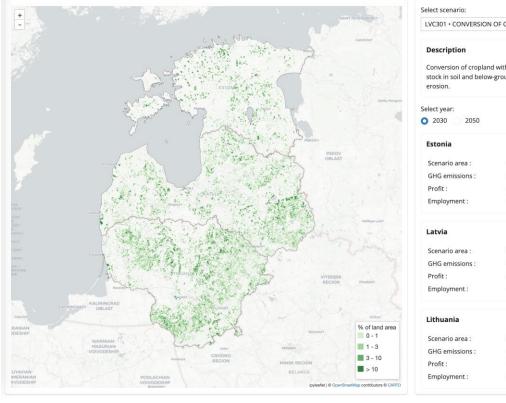
RESTORE2: GROWING CRANBERRIES IN WETLANDS






IMPACT ON GHG EMISSIONS IN 2050

IMPACT ON PROFITS IN 2050



IMPACT ON EMPLOYMENT IN 2050

APPLICATION OF SIMULATION TOOL

LVC301 • CONVERSION	OF CROPLAND TO GRASSLAND	- 2
Description		
	d with nutrient-rich organic soil to grassland. Increased carbon r-ground biomass, reduced risks of nutrient leaching and soil	
elect year:		
2030 2050		
Estonia		
Scenario area :	15 619 ha	
GHG emissions :	-17 181 t CO ₂ eq.	
Profit:	-842 thous. EUR	
Employment:	-23 full time persons	
Latvia		
Scenario area :	30 767 ha	
GHG emissions :	-33 844 t CO ₂ eq.	
Profit :	-1 272 thous. EUR	
Employment:	-81 full time persons	
Lithuania		
Scenario area :	40 764 ha	
GHG emissions :	-44 840 t CO ₂ eq.	
Profit :	-1 727 thous. EUR	
Employment:	-233 full time persons	

orgbalt

The project "Demonstration of climate change mitigation potential of nutrients rich organic soils in Baltic States and Finland" (LIFE OrgBalt, LIFE18 CCM/LV/001158) has received funding from the LIFE Programme of the European Union and the State Regional Development Agency of Latvia. R www.orgbalt.eu

