International Conference

Soil CH₄ and N₂O balance from forest and agriculture lands

<u>Kaido Soosaar</u>, Kamil Sardar Ali, Hanna Vahter, Thomas Schindler, Tartu University; Silava, LAMMC, LUKE, Succow Foundation

LIFE OrgBalt, LIFE18 CCM/LV/001158

EU LIFE Programme project

"Demonstration of climate change mitigation potential of nutrients rich organic soils in Baltic States and Finland"

Increasing CH₄ concentration in the atmosphere Global Monthly Mean CH₄

Trend and variations in global monthly mean CH₄ concentrations during 1983 to 2022 (NOAA)

February 2024: 1928.96 ppb February 2023: 1920.26 ppb

Last updated: Jun 05, 2024

- GWP in 100-yr time span: $1 \text{ mol } CH_4 = 28 \text{ mol } CO_2$
- Lifetime in atmosphere: approx 12 years
- CH₄ is responsible for 20% of global warming potential
 - 54% from anthropogenic sources
 - among natural sources, wetlands make up to 55% of emissions

Ed Dlugokencky, NOAA/GML (gml.noaa.gov/ccgg/trends_ch4/)

Increasing N₂O concentration in the atmosphere

Trend and variations in global monthly mean N₂O concentrations during 1983 to 2022 (NOAA)

February 2024: 337.61 ppb

February 2023: 336.53 ppb

Last updated: Jun 05, 2024

GWP in 100-yr time span:
 1 mol N₂O=265 mol CO₂

- Lifetime in atmosphere: 114
 vears
- 40% from anthropogenic sources, 75% of it from agricultural soils, impact of drainage not considered or counted causally
- Responsible for 6% of global warming potential

Soil C/N and GHG balance monitoring methods

Soil CH₄ balance = methanogenesis vs methanotrophy

Soil CH₄ balance = methanogenesis vs methanotrophy

Soil N_2O production = <u>nitrification</u> and <u>denitrification</u>

Objectives

- (1) to provide annual estimates of soil CH₄ and N₂O effluxes
- (2) to quantify factors influencing dynamics of these effluxes
- (3) to **determine country/region-specific emission factors** for drained and undrained peatland forests and agricultural lands in the temperate/hemiboreal region.

Study Areas

- ✓ Fieldworks in Estonia, Latvia and Lithuania + similar studies in Latvia were included.
- ✓ Drained nutrient-rich organic soil
- ✓ Forests with different main tree species: (Downy Birch, Norway Spruce, Scots Pine, Black Alder)
- ✓ Drained grasslands and croplands

Methods

- GHG flux measurements: monthly and twice per month, 2021 2023.
- Manual static closed dark chamber method for CH₄, N₂O, analysis by GC.
- Auxiliary parameters: Tair, soil; temperature, moisture, water level depth.
- Soil-water chemical analysis
- Soil nutrient contents (0-100 cm)

Description of the study sites – forests

	Wate	er regime					Peat	Stand
		and ainage status	Local name	Site code	Tree Stands	WTL Mean/me dian (cm)	dept h (cm)	age (years)
	ed	Deep	Laeva	EE_DP	Pine	-82/-87	93	60
		Deep	Smiltene	LV_DP2	Pine	-52/-47	138	141
		Deep	Dubrava	LT_DS	Spruce	-71/-66	120	70
		Deep	Laeva	EE_DB1	Birch	-70/-54	76	35
		Deep	Ulila	EE_DB2	Birch	-57/-55	95	45
		Deep	Dubrava	LT_DB	Birch	-156/-166	150	43
		Deep	Pļaviņas	LV_DB2	Birch	-94/-88	56	33
		Deep	Olaine	LV_DP3	Pine	-112/-118	28	101
	Orained	Deep	Laeva	EE_DS	Spruce	-66/-58	87	60
	מס	Deep	Ropaži	LV_DS1	Spruce	-80/-82	50	40
		Deep	Smiltene	LV_DS5	Spruce	-53/-49	212	141
		Deep	Dubrava	LT_DA	Alder	-67/-55	120	30
		Shallow	Smiltene	LV_DP1	Pine	-32/-33	165	141
		Shallow	Smiltene	LV_DB1	Birch	-27/-13	90	24
		Shallow	Viesīte	LV_DS2	Spruce	-31/-28	86	55
		Shallow	Viesīte	LV_DS3	Spruce	-42/-36	95	55
		Shallow	Smiltene	LV_DS4	Spruce	-31/-28	68	162
	Undrained	Wet	Karevere	EE_DA	Alder	-29/-36	35	80
		Wet	Amalva	LT_UA	Alder	-2/-3	130	44
		Wet	Birzgale	LV_UA	Alder	-8/-1	100	74
		Wet	Amalva	LT_UB	Birch	-1/-2	140	44
		Wet	Smiltene	LV_UB1	Birch	-10/-4	230	61
		Wet	Smiltene	LV_UB2	Birch	-18/-7	134	81
		Wet	Smiltene	LV_US1	Spruce	-12/-5	205	88
		Wet	Smiltene	LV_US2	Spruce	-20/-12	221	96

Results: Seasonal variation of soil temperature (TS), water table level (WTL) and CH₄ and N₂O fluxes in all Baltic states

Variation of annual a) CH₄ and b) N₂O fluxes and relationship with mean water level depth

EFs for drained forests vs IPCC, 2014

Forests	Water	CH ₄ kg ha ⁻¹ yr ⁻¹	
	regime	(95% CI)	¹ (95% CI)
IPCC 2013,	Drained	2.5 (-0.6, 5.7)	2.8 (-0.57, 6.1)
Temperate			
IPCC 2013,	Drained	2.0 (-1.6, 5.5)	3.2 (1.9, 4.5)
Boreal, N-rich			
Estonia	Drained	-5.2 (-6.2, -4.1)	1.4 (0.7, 2.1)
Latvia	Drained	-4.2 (-6.6, -1.9)	3.18 (0.25, 6.18)
Lithuania	Drained	-4.4 (-10.9, 2.0)	12.1 (1.59, 17)
Baltic states	Drained	-4.7 (-5.8, -3.5)	4.2 (1.27, 7.1)
	Undrained	58.7 (-9.5, 127)	0.76 (0.25, 1.34)

OrgBalt project EF are significantly lower in case of CH₄!

Description of the study sites - grasslands

Site name & country	Measurem ent period	Mean / median GWL	Organic layer depth	Management and plant community	Fertili- zation	
Drained grasslands						
Kasku LV	Dec 2016– Nov 2018	-85/-81	42	Periodically cut grassland. Hydromorphic soil with drained peat layer.	No	
Saverna EE	Jan 2021– Dec 2022	-59/-54	45	Periodically cut grassland. Hydromorphic soil with drained peat layer.	Yes	
Krista LV	Dec 2016– Nov 2018	-47/-46	50	Periodically cut grassland. Hydromorphic soil with drained peat layer.	No	
Stabul LV	Dec 2016– Nov 2018	-43/-42	50	Periodically cut grassland. Hydromorphic soil with drained peat layer.	No	
Dubrava LT	Jan 2021– Dec 2022	-39/-39	90	Periodically cut grassland. Hydromorphic soil with drained peat layer.	No	
Maramaa EE	Jan 2021– Dec 2022	-31/-23	100	Periodically cut grassland. Hydromorphic soil with drained peat layer.	No	
Nīca LV	Jan 2021– Dec 2022	-27/-21	30	Periodically cut grassland. Hydromorphic soil with drained peat layer.	No	
Undrained peatland						
Ķirbas purvs LV	Jan 2021– Dec 2021	-17/-13	200	Grassland on undrained peatland.	No	
Žuvintas I LT	Jan 2022– Dec 2022	4/0	130	Bushland growing on undrained peatland.	No	
Žuvintas II LT	Jan 2022– Dec 2022	8/6	130	Grassland on undrained peatland.	No	

Dynamics of soil N₂O fluxes

High annual variation -> more frequent site visits are needed!!!

Soil N₂O-N flux variability and mean GWL.

- ✓ Soil N₂O fluxes variation high: from -8.1 to 684.1 µg N m⁻² h⁻¹
- ✓ Mean soil N₂O flux:

drained sites was 22 μg N m⁻² h⁻¹ undrained sites was 1.1 μgN m⁻² h⁻¹

Figure: Soil CH₄-C flux variability and mean GWL.

- Soil CH₄ fluxes variation high: from -87.5 to 11 032.5 µg C m⁻²
- Mean soil CH₄ flux:

drained sites as 27.6 µg C m⁻² h⁻¹ undrained sites was 5030 µgC m⁻²

Principal component analysis (PCA) of soil physical (SWC%, Tsoil_10) and chemical parameters (pH, Mg, Ca, K, P, N, Ctot, Corg, C/N), and soil N₂O-N and CH₄-C fluxes on drained (black) and undrained (purple) sites.

EFs for drained grasslands vs IPCC, 2014

Grasslands		N ₂ O (kg N ha ⁻¹ vr ⁻¹)	CH ₄ (kg ha ⁻¹ vr ⁻¹)
IPCC 2013, Boreal	Drained	9.5 (4.6, 16)	1.4 (-1.6, 4.5)
IPCC 2013, Temperate, N-rich	Deeply drained	8.2 (4.9, 11)	16 (2.4, 29)
IPCC 2013, Temperate, N-rich	Shallow drained	1.6 (0.56, 2.7)	39 (-2.9, 81)
Estonia (n=2)	Drained	2.18	-1.4
Latvia (n=4)	Drained	1.64	3.92
Lithuania (n=1)	Drained	1.94	-0.63
Baltic regioon (EE, LV, LT)			
Baltic region (EE, LV, LT) (n=6)	Deeply drained	$1.9 \pm 2.2 \text{ (SE)}$	$6.7 \pm 19.4 \text{ (SE)}$
Baltic region (EE, LV, LT) (n=3)	Undrained	0.06 ± 0.01 (SE)	458 ± 377 (SE)

OrgBalt project EF: for CH_4 lower compared to boreal and temperate for N_2O lower compared to temperate and higher: boreal!

EFs for drained croplands vs IPCC, 2014

OrgBalt project EF for N₂O at the same range!

Conclusion

- Clear Land-use effect on GHG emissions => Forests vs Agriculture
- Climate zone variability, soil nutrient status and WTL affects annual CH₄ and N₂O emissions.
- Drainage reduce CH₄ while may increase N₂O emissions, mainly in afforested sites with previous agricultural use and vegetation (Alder trees).
- This study can be used for updating regional (Tier 1) or country-specific (Tier 2) emission factors.
- Further studies required in site categories, that could reduce the variation for CH₄ and N₂O EFs for nutrient-rich organic soils.

Thank you!

LIFE OrgBalt, LIFE18 CCM/LV/001158

EU LIFE Programme project

"Demonstration of climate change mitigation potential of nutrients rich organic soils in Baltic States and Finland"

