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SUMMARY 
Traditional methods available for studying nutrient concentrations and other soil properties involve 

several steps, are rather time-consuming, involve hazardous chemicals, and may result easily to systematic 

differences in the outcome. Infrared spectroscopy is a rapid, cost-effective and relatively easy-to-use 

technique that has long been used for characterization of different sample materials. Infrared spectroscopy 

is based on each chemical bond absorbing infrared radiation, where mid-infrared ranges have been used 

to enhance or replace conventional soil analyses. The main soil components absorbing infrared radiation 

in organic soils are carbohydrates, aromatics, acids, and aliphatics. Infrared spectra can either be used for 

direct interpretation of the chemical composition, or for creating calibration models. Calibration models 

are regression models based on a calibration data set that consists of samples with known composition 

plus their infrared spectra. These models may then be used to predict the composition of unknown samples 

based on their infrared spectra only. Building representative standardized spectral libraries has been put 

forward is a priority task for spectral studies. Current spectral libraries mostly include data from mineral 

soil samples and are thus not readily applicable for organic soils.  

The aim of this study was to start building a spectral library for organic soils (including peat) and to create 

initial calibration models to evaluate method potential to predict pH value and C, N, P, K, Ca, Mg and 

humic acid concentration in peat samples. For soil parameter prediction model calibration and validation 

soil samples from peatlands with various land-uses, as well as samples from naturally wet and drained 

forest stands with different forest site type classification were selected. Sample set dominated by organic 

soils with some exceptions of mineral soil from deeper soil layers. 

In the scope of this study it was observed that RSD value considerably lower than 2 signals a possible 

difficulty to apply current methodological approach for quantitative analyte prediction in unknown 

samples. The highest potential of prediction performance was observed for pH, Ca and Mg, but the lowest 

perspective for P and K. C, N and humic acid as well as other parameter prediction performance may be 

improved by primary increasing count and variety of calibration samples (spectra) and secondary by 

increasing count of measurement replicates for the same sample to discard replicates that increases 

relative standard deviation of prediction replicates above threshold, e.g. 10 %. It was observed that mostly 

the highest performance of analyte prediction in peat samples was for prediction models elaborated by 

peat soil calibration data set only, addition of forest soil sample spectra to calibration data set did not 

improve model performance. Nevertheless, also for such calibration data sets with peat soils only, PCA 

often indicated significant spectral differences that could have added uncertainty to values predicted by 

model. In the scope of the study separation of spectra by PCA did not improve model quality as model 

robustness may have decreased to insufficient number of spectra. Higher number of spectra would allow 

to make separate calibration models by focusing more on PCA results. Afterwards these models could be 

applied to unknown samples by guidance of values of spectral residues and Mahalanobis distance to match 

appropriate models and unknown spectra. Other potential solution for improving model prediction 

capabilities may be improvements of sample preparation procedure, e.g., ensuring more homogenous 

samples.  
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1.  INTRODUCTION 

Information on soil nutrient concentrations and other soil properties, e.g., characteristics of the soil 

organic matter are needed for many purposes. The rates of many soil processes and, consequently, soil 

greenhouse gas emissions depend at least to some extent on the nutrient regime of the site (IPCC 2014). 

Accordingly, nutrient concentrations of organic soils are routinely measured in several laboratories. 

Several methods are traditionally available, the most common ones traditionally including wet digestion 

or dry ashing of samples and analysis of mineral nutrient concentrations with Inductively Coupled Plasma 

Spectroscopy or Atomic Absorption Spectrophotometer. The work involves several steps, is rather time-

consuming, and measurements done at different times with slightly different procedures may lead to 

systematic differences between different batches (Laiho et al. 2008). Also, these methods usually involve 

use of strong acids with its hazards. Nitrogen concentrations need further to be analyzed with a different 

method than the other main nutrients. Thus, there is space for a new harmonized method for such analyses. 

Infrared spectroscopy is a rapid, cost-effective and relatively easy-to-use technique that has long been 

used for characterization of different sample materials, including determination of several chemical and 

biological characteristics of soils (e.g., Confalonieri et al. 2001; Terhoeven-Urselmans et al. 2008; 

Cécillon et al. 2009; Bellon-Maurel and McBratney 2011). Infrared radiation is the region of 

electromagnetic radiation where wavelengths range from ca. 780 nm to ca. 1 mm. Infrared waves are thus 

longer than those of visible light. Infrared spectroscopy is based on each chemical bond absorbing infrared 

radiation in a specific manner that depends on the nature of the bond. Thus, an infrared absorbance 

spectrum, showing for each wave-length or wave-number the proportion of radiation absorbed by the 

sample, shows the relative abundance of different chemical bonds in the sample, that is, a summary of the 

chemical composition of the sample (e.g., Coates 2000).  

The main soil components which absorb infrared radiation in organic soils are carbohydrates, aromatics, 

acids, and aliphatics. While the peak heights formed in IR spectrum alone are not directly quantitative, 

after area normalization and baseline correction, comparing peak heights between samples is useful for 

determining the relative abundance of major structural groups (e.g., exemplifying graph adapted from 

Hodgkins et al. 2018, below). The relative abundances of carbohydrates and aromatics are very well suited 

for evaluating origin of soil materials and levels of humification or decomposition in organic soils. 

Carbohydrates (O-alkyl-C) are primarily found in peat-forming plants as cellulose, and are the more labile 

constituent of peat (LaRowe and Van Cappellen, 2011; Tfaily et al. 2014; Hemingway et al. 2019). O-

alkyl-C abundances have been shown to be the best proxy for decomposition potential compared to other 

factors such as soil pH, depth (age), and element ratios such as C/N, O/C, and H/C (Baldock et al. 1997; 

Leifeld et al. 2012). 
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The infrared range is usually divided into three regions: near infrared (nearest the visible spectrum), mid 

infrared, and far infrared. Both near infrared (NIR) and mid infrared (MIR) ranges have been used to 

enhance or replace conventional soil analyses. MIR has often been found somewhat superior to NIR in 

soil analyses (e.g., McCarty et al. 2006; Viscarra Rossel et al. 2006; Vohland et al. 2014), even though 

the benefits of each technique may depend on the context or the variables being studied (Madari et al. 

2006; Ludwig et al. 2008; Reeves 2012; Straková et al. 2020). 

Infrared spectra can either be used for direct interpretation of the chemical composition based on the 

absorbance intensities at different wave lengths (e.g., Coates 2000), or for creating calibration models 

(e.g., Munawar et al. 2020), or both (e.g., Straková et al. 2020). Calibration models are regression models 

based on a calibration data set that consists of samples with known composition plus their infrared spectra. 

These models may then be used to predict the composition of unknown samples based on their infrared 

spectra only. Multiple soil properties can be estimated for each sample from a single spectrum. Nutrient 

concentrations in soils can be estimated only using calibration models, and such models have been 

successfully built (e.g., Confalonieri et al. 2001; Viscarra Rossel et al. 2006; Du et al. 2009), also for 

wetland soils (Cohen et al. 2005).  

Single studies with specific sample sets may yield results that are not replicable, and the models built on 

a limited range of samples cannot generally be applied on samples outside that range. Consequently, 

building representative standardized spectral libraries has been put forward is a priority task for spectral 

studies (e.g., Cécillon et al. 2009; Nocita et al. 2015; Straková et al. 2020). Using the USDA NSSC-KSSL 

spectral library and development of appropriate statistical models, it has recently been shown that 

reasonably accurate and precise estimates of a range of soil properties can be obtained (Comstock et al. 

2019; Dangal et al. 2019; Ng et al. 2019; Nocita et al. 2015; Sanderman et al. 2020; Seybold et al., 2019; 

Shepherd and Walsh 2007, Shepherd et al. 2015; Terhoeven-Urselmans et al. 2010; Viscarra Rossel et al. 

2008; Wijewardane et al. 2018). Yet, extreme sample diversity in a library may also lead to poor modeling 

outcomes (Reeves et al. 2009). Current spectral libraries mostly include data from mineral soil samples 

and are thus not readily applicable for organic soils.  

The aim of this study was to start building a spectral library for organic soils (including peat) and to create 

initial calibration models to evaluate method potential to predict pH value and C, N, P, K, Ca and Mg 

concentration in peat samples. 
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2.  METHOD DESCRIPTION 

2.1  Principle 

In the scope of this study mid-Infrared (MIR) Diffuse Reflectance Fourier Transform Spectroscopy 

(DRIFTS) is applied. DRIFTS is a IR spectroscopy technique that allows rapid measurements to dried, 

homogenized sample without additional sample preparation procedure. During measurements a samples 

of <2 mm air-dry soil are placed in the wells of a microplate, inserted into a microplate reader for MIR 

data collection. The infrared light on a sample is reflected and transmitted at different amounts 

depending on the bulk properties of the material. The resulting MIR spectra are stored for future analysis. 

Because of the small diameter of microplate wells at 6-mm, the homogeneity and particle-size of the 

sample are important to examine when the spectral results are interpreted (Baldock and Hawke, 2010). 

The main purpose of collecting MIR spectra is to estimate soil properties from spectra from models built 

on spectral and measured data. 

 

2.2  Spectral and measured data model building 

In the scope of this study chemometric model building was based on multivariate calibration analysis. 

Multivariate calibration make use of not only a single spectral point but take into account spectral 

features over a wide range. Purpose of this calibration technique is to correlate measured absorption of 

infrared radiation with properties of analyzed peat and soil samples. To determine concentration of more 

than one analyte in each sample simultaneously partial least square (PLS) fit method is used - the 

information contained in the spectra of the calibration samples are compared to information of the 

concentration values using a PLS regression. PLS algorithm deployed ensures that relevant principal 

components (factors) of spectral data matrix are used for calibration to find the best correlation function 

between spectral and concentration data. Ultimately calibration function calculated by Bruker software 

QUANT is the model used for then analysis of unknown samples later. To test model reliability model 

validation procedure was performed. 

The error of calibrations depends on not only the quality of the MIR spectra, but also on the accuracy of 

the measured data to which spectra are modeled. Even for a property that lends itself to being modeled, 

poor quality measured data will result in high model errors. 

Model performance on unknown samples will depend on how well the soil variability was captured in 

the calibration. For optimal model performance and because of the great variability of soils, it is 

therefore important to capture the variability of the specific soils in the target area to which the 

calibration is intended to apply. 
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2.3  FTIR spectrometer specification 

 

Parameter Description 
Instrument type INVENIO-S. 

Accessory HTS – XT equipped with MCT type medium band detector with 

working range 12000…600 cm-1, 8 h Dewar hold time. Samples 

are entered in microplate format sample carriers plate with 24 

sample cups. 

Optics Configuration Right Exit with: MIR, KBr, LN MCT Mid, Microplate reader. 

Spectral range at least 7500…350 cm-1. 

Signal-to-noise at least 55 000 (1 min measurement time, @4 cm-1 resolution, 

peak-to-peak). 

Spectral resolution adjustable in range 0.4…128 cm-1. 

Wavenumber 

precision 

<0.0005 cm-1 @1500…1600 cm-1. 

Wavenumber 

accuracy 

> 0.01 cm-1 @1500…1600 cm-1. 

Photometric accuracy <0.1% transmission. 

Software OPUS 8.5(SP1) Build: 8, 7, 10 / DB: 8,7,10,139 

Software includes a functionality of creating and managing PLS 

based quantitative calibrations, including functionality of PCA 

(principle component analysis) and automatic finding of correct 

spectral regions for each quantified parameter. 
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2.4  Instrument method settings 

Category Parameter Value 

Scan settings Resolution 4 cm-1 

Sample Scan time 64 scans 

Background scan time 64 scans 

Data range 4000 to 600 cm-1 

Result spectrum Absorbance 

Saved data blocks Absorbance, single chanel; sample 
interferogram, background, 
background interferogram 

Additional tratment Disabled 

Atmospheric compensation Disabled 

Optic External synchronization Off 

Source setting MIR 

Beamsplitter KBr 

Optical filter setting Open 

Aperture setting 6 mm 

Acessory HTS-XT LN-MCT Mid 

Measurement channel Right Exit 

Background measurement 
channel 

Right Exit 

Detector setting LN MCT Mid (microplate reader) 

Scanner velocity 15 kHz 

Sample signal gain Automatic (pream. gain A) 

Background signal gain Automatic (pream. gain A) 

Delay after device change 0 

Delay before measurement 0 

Optical Bench Ready Off  

Acquisition Wanted high frequency limit 8000  

Wanted low frequency limit 0 

High pass filter On 

Low pass filter Automatic 

Acquisition Mode Double Sided, Forward-Backward 

Correlation mode Off 

External analog signals Off 

FT Phase resolution 32 

Phase Correction mode Power Spectrum 

Aphodization function Blackman-Harris 3-Term 

Zerofilling factor 2 

Perform interferogram non-
linearity correstion before FT 

Enabled 
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2.5  Sample testing procedure 

Before sample processing it is ensured that instrument is warmed-up After cooling HTS-XT detector with 

liquid nitrogen for 30 minutes, instrument performance qualification according to manufacturer’s 

instructions is conducted. 

Air dried samples sieved through 2 mm sieve and milled till fine powder are filled in sample cups of sample 

carrier plate in 3 replicates. Therefore, for each sample three subsamples are scanned. Samples in each 

sample cup are compressed by matching diameter steel rod. Samples are handled with care to avoid sample 

cross contamination within sample wells. Sample carrier plate and sample cups before handling next 

samples are cleaned mechanically by using a brush. 

As the optical bench is not purged, background scan is performed for each sample plate prior to scanning 

of samples to compensate for fluctuating concentrations of atmospheric gases. 

Spectral interferograms are processed by Fourier transform to convert them to absorbance spectra which 

are then saved as a new Bruker opus file for each sample. 

 

 

2.6  Spectral data processing and calibration model building 

Samples studied 
For purpose of this study 3 sample sets generally consisting of organic soil sampled in Latvia were 

selected from soil archive of LSFRI “Silava”. Reference values of soil parameters were acquired in 

Laboratory of forest environment of LSFRI “Silava” by applying standard methods for all parameters 

except for humic acid content where national testing method was applied. Although samples were sampled 

from mostly areas with organic soils also some mineral soil samples were included in sample sets as soils 

were sampled in depth up to 150 cm. Mineral soil samples were not excluded to check impact of such 

samples to MIR-DRIFTS prediction model robustness and performance.  

Selected 3 sample sets can be distinguished by its origin form drained and naturally wet forest stands with 

different stand type classification and peatlands with various land-uses: 

• Peatlands - soil samples from peatlands with different land-use. Each land-use is represented by 3-4 

plots:  
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o peat extraction site; 

o partially extracted peatland, poorly developed vegetation; 

o partially extracted peatland, covered by bushes and herbaceous plants; 

o perennial grassland (pasture); 

o cropland (cereals and sown grasses); 

o cropland (legumes); 

o plantations of blackberries; 

o plantations of cranberries; 

o at least 20 years old pine or spruce stands; 

o at least 20 years old birch stands; 

o natural raised bog; 

o natural transitional bog. 

 

• Forests with drained and naturally wet nutrient-rich organic soil – soil samples from 26 forest site 

types classified as drained (Myrtillosa turf.mel. and Oxalidosa turf. Mel.) and naturally wet 

(Dryopterioso–caricosa and Filipendulosa) forest sites with nutrient rich organic soils according to 

Latvia's national forest site type classification (Bušs, 1981). 

 

• Forests with mineral and organic soils - O horizon from forest stands with naturally dry mineral 

soil (Oxalidosa, Hylocomiosa), drained mineral soil (Myrtillosa mel.) and naturally wet organic soil 

(Dryopterioso–caricosa) with reference values of humic acid content. 
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Description of samples and reference methods 
In the scope of this study in total 1891 samples were scanned in 3 replicates by MIR-DRIFTS, 5673 soil 

spectra are acquired, respectively. Scanned sample set is created by combining 3 sample subsets: 

Sample origin Reference values 

values available 

Soil layer Sample 

count 

Peatlands pHKCl; Ctot; Ntot; HNO3 

extractable P, K, Ca Mg 

O horizon, 0 to 50 cm 

by 10 cm step, 50-100, 

100-150 

794 

Forests with drained and 

naturally wet nutrient 

rich organic soil 

Bulk density, pHKCl; 

Ctot; Ntot; HNO3 

extractable P, K, Ca Mg 

O horizon, 0 to 50 cm 

by 10 cm step, 50-75, 

75-100. 

803 

Forests with mineral and 

organic soils 

Humci acid O horizon 100 

 

All samples were tested by conventional methods in the LSFRI “Silava” Laboratory of forest environment: 

Parameter Instrument Sample 

pretreatment 

Standard method 

pHKCl pH meter Oven dried LVS ISO 

10390:2002 

L/NAC:2005 L 

Ctot Elementar EL Cube Mineral soil sieved 

through 2 mm sieve, 

organic soil milled 

till fine powder 

LVS ISO 

10694:2006 

Ntot LVS ISO 

13878:1998 

HNO3 extractable K Thermo Fisher 

Scientific iCAP 7200 

Duo 

Microwave digestion LVS EN ISO 11885 

HNO3 extractable Ca 

HNO3 extractable Mg 

HNO3 extractable P 

Humic acid F-TS 1000 Titroline 

5000 

Air dried (Pāvule, 1978) 

 

2.7  Model elaboration and validation 

Each of sample subsets by sample origin and relevant spectra were divided in 2 separate data sets (all 

spectra replicates of one soil sample destined in only one data set): 

• 70% of sample spectra for calibration model elaboration; 

• 30% of sample spectra – for model verification. 

Acquired data subsets were combined by spectrum use - for calibration or verification. Combined 

calibration spectra set were used for calibration model elaboration. For each of parameter several 

calibration models (calibrations) were created for further evaluation. Each of calibration versions for one 

soil parameter is outcome of different combinations of main model elaboration decisions: 

• outlier spectrum exclusion from calibration. Identification and assessment of spectrum outliers using 

visual representation of model version characteristics acquired by model cross-validation provided 

by OPUS software. Spectrum outliers were identified by: 
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o spectrum Mahalanobis 

distance value1; 

 

 

o plotting value predicted 

by model vs. reference 

value; 

 

o plotting predicted value of 

spectrum replicate vs. 

mean of predicted values; 

 
  

 
1  The Mahalanobis distance serves to quantify outliers. During the PLS calculation the Mahalanobis distances of each calibration spectrum is determined. From these values the 

threshold of the Mahalanobis distance is derived. Spectra of unknown samples can be reliably analyzed using a calibration function if their Mahalanobis distance is within this 

threshold. 
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o plotting difference 

between bias of predicted 

value vs. reference value; 

 

o plotting spectrum 

Mahalanobis distance 

value vs. spectral 

residuals2 value 

 

o results of PCA (Principal 

component analysis) 

 
 

• Selection of spectrum preprocessing method: 

o no spectral data preprocessing (No); 

o constant offset elimination (COE); 

o straight line subtraction (SLS) - : fits a straight line to the spectrum and subtracts it. This accounts 

for a tilt in the recorded spectrum; 

 
2  The result of a factorization never describes completely the variance of the spectral data matrix and the concentration data matrix. The remaining part which is not accounted for by the 

factorization is called the residual. The spectral residual is important for the recognition of outliers. The bigger the residual, the more likely is the samples an outlier. 
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o vector normalization (VN) - normalizes a spectrum by first calculating the average intensity value 

and subsequent subtraction of this value from the spectrum. Then the sum of the squared 

intensities is calculated, and the spectrum is divided by the square root of this sum; 

o min-max normalization (MMN): first subtracts a linear offset and then sets the y-maximum to a 

value of 2 by multiplication with a constant. Used similar to the vector normalization; 

o multiplicative scattering correction (MSC) - performs a linear transformation of each spectrum 

for it to best match the mean spectrum of the whole set. This method is often used for spectra 

measured in diffuse reflection; 

o internal standard (IS); 

o first derivative (FD) - calculates the first derivative of the spectrum. This method emphasizes 

steep edges of a peak. It is used to emphasize pronounced, but small features over a broad 

background. Spectral noise is also enhanced; 

o second derivative (SD) - : similar to the first derivative, but with a more drastic result; 

o first derivative + straight line subtraction (FD+SLS); 

o first derivative + vector normalization (FD+VN); 

o first derivative + multiple scattering correction (FD+MSC). 

• Selection of calibration regions in spectra: 

o Manually; 

o Automatic by OPUS software, options; 

▪  General A - frequency region is divided into 10 equal subregions. To find the optimum combination 

the calculation starts with 10 subregions and successively excludes one subregion. This procedure 

continues until the mean prediction error value does not improve further; 

▪  General B - frequency region is divided into 10 equal subregions. To find the optimum combination 

the calculation starts with one subregion. After the best subregion has been found a second subregion 

is added. After the best combination of two subregions has been found a third subregion is added and 

so on. The best combination of subregions is searched by adding and leaving out further subregions 

• Count of ranks3 used in calibration by evaluating: 

o calibration root mean square error of cross-validation depending of count of ranks 

o correlation between predicted value of model and reference value depending of count of ranks. 

During elaboration of different calibration model versions, each of version were evaluated by cross-

validation – the same spectral data set is used for both model calibration and validation. During cross-

validation multiple cycles of calibration and validation are performed as data set used for validation must 

not be part of the calibration set. During every cycle small fraction of spectral data set is excluded from 

calibration and used for validation. During next cycle previous validation data set is returned to calibration 

data set and another fraction of calibration data is transferred to validation data set. Cycles are repeated 

until all samples have been used for validation. Count of spectral data samples used for validation were 

chosen as proposed by Opus software. Cross-validation results are used for initial evaluation of calibration 

model performance only. Quality of elaborated model versions were compared by: 

• R2 – coefficient of determination; 

• RMSECV – root means square error of cross validation; 

• RPD – residual prediction deviation; 

• rank – calibration factors used by model. 

Final evaluation of calibration model versions are done by external test validation In order to choose the 

most reliable version from all calibration model versions elaborated, an external test set validation was 

 
3  The rank is number of PLS vectors. The quality of the chemometric model depends on the choice of the correct number of factors needed; this is also called the rank of the model. 

Choosing a too small rank results in underfitting so that not all features can be explained by the model. On the other hand, including too many factors (rank too high) leads to 

overfitting and only adds noise, in fact degrades the model. 



 

 

EU LIFE Programme project “Demonstration of climate change mitigation measures 

in nutrients rich drained organic soils in Baltic States and Finland” 

 

18 
 

performed by verification data set that was not used in calibration model elaboration to compare model 

performance analyte concentration prediction characteristics were compared: 

• RMSEP - root mean square error of prediction; 

• bias - systematic deviation of the measured (predicted) values from the true value due to a particular 

measurement method, for example. In our case, it is the difference between the average true value 

and the average measured value of the validation set samples; 

• SEP – standard error of prediction (bias-corrected) is a quantitative measure for the preciseness of 

a test set validation. It indicates the standard deviation of all bias-corrected measured values from 

the true value 

• RPD - residual prediction deviation is the ratio of standard deviation to standard error of prediction 

• offset – the y-value of the regression line if x = 0 

• slope – a value of the regression line. 

One model or combination of models (separate model models for defined concentration range prediction) 

with the best performance by root mean square error of prediction and slope value were used for prediction 

method combined uncertainty evaluation. Combined uncertainty was calculated using calibration model 

data (true and predicted values of the analyte) according to NordTest methodology (Magnusson et al. 

2012). Estimated combined uncertainty includes measurement result repeatability (standard error of 

measurement replicate results), bias from true value (nominal analyte concentration in sample) and 

reference method uncertainty. Combined uncertainty calculations steps: 

1. Calculation of repeatability standard deviation of a predicted values (calculated form analyte 

concentration prediction from sample spectra scanned in 3 repetitions, each scan made for different 

subsample of the sample): 

𝑆𝑟 =
∑ 𝑆𝑖

n
 [%] , where: 

Sr - Repeatability standard deviation of a predicted values; 

Si – relative standard deviation of 3 prediction replicates; 

n – sample count. 

 

2. Calculation of uncertainty component for bias: 

𝑅𝑀𝑆𝑏𝑖𝑎𝑠 = √
∑(𝑏𝑖𝑎𝑠𝑖)2

𝑛
[%], where 

RMSbias – root mean square of bias; 

biasi – difference between predicted concentration and true (measured by reference method) 

analyte concentration in an individual sample; 

n – sample count. 

𝑢(𝑏𝑖𝑎𝑠) = √𝑅𝑀𝑆𝑏𝑖𝑎𝑠
2 + 𝑢(𝐶𝑟𝑒𝑓)2[%], where: 

u(bias) – uncertainty component for bias; 

u(Cref) – combined uncertainty of reference method. 

 

3. Calculation of combined uncertainty: 

𝑢𝑐 = √𝑆𝑟
2 + (𝑢(𝑏𝑖𝑎𝑠))

2
[%], where 

 

4. Calculation of expanded uncertainty: 

𝑈 = 2 ∗ 𝑢𝑐[%], where 

U – Expanded combined uncertainty (close to 95 % confidence interval) 
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3.  RESULTS 
3.1  pH 

During pH prediction model elaboration 7 calibration model versions (pH_v1 – pH_v7) were created by 

using different combinations of all available soil spectra (peat and forest soil sample spectra separately as 

well as combined). All elaborated pH prediction models were validated by two datasets: all available peat 

sample spectra and combination of both peat and forest soils sample spectra. Performance of elaborated 

pH prediction models were comparable for prediction of pH in both peatland and combined peatland and 

forest land validation sample test set. Higher RMESP for prediction of pH for combined peatland and 

forestland validations sample set can be explained that also pH range for this data set is wider. Although 

PCA indicated spectral feature differences in peat and forest soils sample spectra, it was observed that 

soil matrix has low impact on pH prediction model performance (Kļūda! Nav atrasts atsauces avots.).  

 

 
Figure 1. PCA results indicating soils matrix effect on differences of spectra features. (Sample type is 

indicated by color: green – peat; brown – forest soil with Ctot >200 g kg-1, gray – forest soil Ctot<200 

g kg-1) 

 

Validation results (RMSEP and slope) indicates that pH_v3 is the most appropriate calibration model 

version to predict pH value in both beat and forest soil samples. According to prediction model results, 

RMSEP of pH prediction in peat (pH range 2.0 – 6.6) and forest soil (pH range 1.9-7.6) samples is 0.172 

and 0.287 accordingly (Table 1). Most appropriate spectra preprocessing method was multiplicative 

scattering correction. 

Table 1. Relationship between average predicted humic acid value and relative standard deviation of 

replicates 

Validation 
dataset 

Model 
version 

Spectra RMSEP Bias SEP RPD Offset Slope 

Peatlands, 
pH 2.0-6.6 

 

pH_v3 711 0.172 0.0142 0.172 6.28 -0.055 1.012 
pH_v7 711 0.176 0.0133 0.175 6.15 -0.057 1.013 
pH_v6 711 0.179 0.0296 0.176 6.11 -0.042 1.004 

Peatlands + 
forest lands, 
pH 1.9-7.6 

pH_v7 1392 0.286 -0.00118 0.286 4.52 0.092 0.978 
pH_v1 1392 0.287 0.00527 0.287 4.51 0.116 0.971 
pH_v3 1392 0.287 -0.00016 0.287 4.51 0.045 0.989 
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pH values predicted in peat samples by model version pH_v3 has high correlation (0.99) with reference 

pH values (Figure 2), in addition, predicted and references value linear regression slope is irrelevant 

(1.012). Predicted value bias from reference value is evenly distributed across pH value range of available 

validation soil sample set (Figure 3).  

 
Figure 2. Linear regression of pH reference (x axis) and predicted values (y axis) 

 

 
Figure 3. Relationship between reference (x axis) and bias of predicted (y axis) pH values 

 

Results of calibration model version pH_v3 validation shows that at most cases bias of predicted pH value 

in peat samples does not exceed ± 10 % (RMS bias 5.5 %) (Figure 4), while average relative standard 

deviation of pH prediction by peat 3 sub-sample replicates is 1.5 % (Figure 5). According to reference 

method uncertainty and acquired pH value prediction bias and repeatability characteristics, combined peat 

pH prediction uncertainty is 6.2 % (Table 2).  
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Figure 4. Relationship between predicted pH value and relative bias from reference value 

 

 
Figure 5. Relationship between average predicted pH value and relative standard deviation of 

replicates 

 

Table 2. pH prediction method validation summary 

Concentration 
range 

RMSbias, 
% 

U(Cref), 
% 

U(bias), 
% 

RSD, 
% 

Combined 
uncertainty, 
% 

Expanded 
combined 
uncertainty, % 

pH 2.0 – 6.6 5.51 2.36 6.00 1.47 6.18 12.35 
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3.2  Total carbon (C) 

As a result of total carbon prediction calibration 25 different model versions (Ctot_v1 – Ctot_v25) were 

elaborated by using peatland and forest land samples separately as well as both calibration at sets 

combined. None of elaborated models could provide consistent C content prediction in whole calibrated 

concentration range (33.7 - 540.0 g C kg-1), therefore 2 separate and most appropriate model versions 

were chosen for 2 calibration ranges. Concentration threshold of 540 g kg-1 were determined by 

evaluating visual representation of model validation results – plots of predicted value bias vs reference 

value and predicted value vs reference value. Model version validation results show that model (Ctot_v5) 

with the best performance for C prediction covering concentration range <540 g kg-1 in peat samples 

were calibrated by peat sample data set only. However, for concentration range above 540 g C kg-1 the 

best performance was for model (Ctot_v1.2) calibrated by peat and forest land soils with high C content 

combined. Such observation may point out that there were not enough peat soil samples in calibration 

data set to build robust C prediction model for high concentration range by using peat samples only. Also, 

RPD value was significantly higher for model versions calibrated and validated by peat and forest soils 

data sets combined pointing out that C prediction in peat samples model performance may be improved 

by increased number calibration samples with higher diversity of peatland samples (Table 3). 

Table 3. Validation summary of Ctot prediction model versions with lowest RMSEP 

Validation dataset Model 
version 

Spectra RMSEP Bias SEP RPD Offset Slope 

Peatlands, 
33.7-699.0 g C kg-1 

 

Ctot_v5 714 36.3 -4.17 36.1 2.6 87.803 0.839 

Ctot_v8 714 36.8 -2.36 36.7 2.55 88.114 0.835 

Ctot_v9 714 37.2 -0.597 37.2 2.52 94.899 0.818 

Peatlands, 
33.7-540.0 g C kg-1 

Ctot_v5 381 42.4 -20.3 37.3 2.6 58.394 0.918 

Ctot_v9 381 42.9 -18.6 38.7 2.5 61.759 0.907 

Ctot_v8 381 43.5 -19.5 39 2.49 52.159 0.93 

Peatlands, 
540.0-699.0 g C kg-1 

Ctot_v8 333 27.1 17.3 20.9 1.56 37.783 0.905 

Ctot_v1.2 333 27.7 17.7 21.3 1.53 0.238 0.969 

Ctot_v5 333 27.8 14.3 23.8 1.37 3.612 0.969 

Peatlands + forest 
lands 

0.8-699.0 g C kg-1 

Ctot_v2 1434 41.4 0.00413 41.4 4.22 21.895 0.951 

Ctot_v1 1434 41.7 0.434 41.7 4.2 24.594 0.944 

Ctot_v3 1434 41.8 0.0298 41.9 4.18 23.693 0.947 

Peatlands + forest 
lands 

0.8-430.0 g C kg-1 

Ctot_v1 354 59.6 -10.1 58.8 2.56 18.065 0.956 

Ctot_v2 354 61 -9.95 60.3 2.5 13.451 0.981 

Ctot_v3 354 61.7 -9.64 61.1 2.47 17.649 0.955 

Peatlands + forest 
lands 

430.0-699.0 gC kg-1 

Ctot_v1 1080 26.3 1.82 26.2 1.83 129.269 0.754 

Ctot_v2 1080 26.9 1.88 26.9 1.78 125.381 0.761 

Ctot_v10 1080 27.1 2.4 27 1.78 139.982 0.733 
 

Model version Ctot_v5 was chosen as most reliable for C prediction in peat samples for concentration 

range bellow 540 g C kg-1 as model verification showed the lowest both RMSEP (42.4) and SEP (37.3) 

values for this specific model versions, also slope value of linear regression between refference values 

and predicted value 0.918 is appropriate (Figure 6), as data available for model calibration could not 

achieve significantly better model performance – for different model versions slope ranged form 0.733 to 

0.951. Bias value had no considerable impact on overall performance of elaboratoed model versions as 
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for most of models versions it ranged from -18.6 to -22.3. Test set validation of model version Ctot_v5 

indicated an average bias of -20.3 g C kg-1, however in some sases bias exceeded 100 g C kg-1 (Figure 

7). In most cases high bias is obserwed at C concentration <400 g C kg-1, most likely these samples were 

taken from deeper peatland layers and had mineral soil admixture. Exclusion of such samples durring 

model callibration did not iprove C prediction quality in peat samples with concentration range < 540 g 

C kg-1, therefore it was decided to include them in booth calibration and validation data sets to increase 

and demonstrate C prediction model robustness. 

 

Figure 6. Linear regression of Ctot reference (x axis) and predicted values (y axis) 

 

 
Figure 7. Relationship between reference (x axis) and bias of predicted (y axis) Ctot values 

 

For concentration range above 540 g C kg-1 best performance was achieved by model version (Ctot_v1.2) 

that was calibrated by original peatland and forest soil data sets combined – none of spectras were 

excluded. That highlights imoprtance of highly diversified sample availability for FTIR-DRIFTS 

prediction model elaboration with high performance and robustness. Model Ctot_v1.2 validation showed 
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good slope value (0.969) of regression between predicted and refference values (Kļūda! Nav atrasts 

atsauces avots.). Average bias of predited concentration is 17.7 g C kg-1 (Figure 9) or less then 3% if 

concentration range is considered. 

 

 
Figure 8. Linear regression of Ctot reference (x axis) and predicted values (y axis) 

 

 
Figure 9. Relationship between reference (x axis) and bias of predicted (y axis) Ctot values 

 

Performance of both chosen models combined is represented in Figure 10 and Figure 11. It can be clearly 

distinguishable that C prediction quality is decreased when samples with mineral soil admixture are 

evaluated. C prediction quality is considerable higher if samples with high C content are being tested. If 

C content is above 400 g kg-1 bias of predicted C values rarelly exeeds 20 % (Figure 10) and relative 

standard deviation of measurement replicates stays bellow 5 % (Figure 11). 
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Figure 10. Relationship between predicted Ctot value and relative bias from reference value 

 

 
Figure 11. Relationship between average predicted Ctot value and relative standard deviation of 

replicates. 

 

According to test set validation results, if predicted concentration is bellow 400 g C kg-1 root mean square 

bias of predicted value is 26 % and relative standard deviation of prediction replicates is 10 %. For 

concentration range above 400 g C kg-1 estimated bias and repeatability is 6 % and 1 % respectively. If 

these prediction quality indicators are combined with reference method uncertainty of 2 %, combined 

uncertainty of C content prediction at concentration range below and above 400 g C kg-1 is 28 % and 6 % 

respectively. 
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Table 4. C prediction method validation summary 

Concentration 
range 

RMSbias, % U(Cref), % U(bias), % RSD, % 
Combined 

uncertainty, 
% 

Expanded 
combined 

uncertainty, 
% 

< 400 g kg-1 26.05 1.73 26.11 10.38 28.1 56.20 

> 400 g kg-1 5.90 1.73 6.15 1.22 6.27 12.54 

 

3.3  Total nitrogen (N) 

From 32 calibration model versions created for prediction of N content in peat samples 2 separate versions 

were found to be most suitable for N prediction in 2 concentration ranges: below and above 13 g C kg-1. 

At lower range, the best performance was for model version N_v29 for which combination of peatland 

and forest land sample spectra were combined, althought share of forest soils samples were slightly above 

10 % - most of forest soil samples had to excluded from calibration data set to achieve best performance 

of N prediction in peat samples. While for concetration range above 13 g N kg-1 forest soils sample 

spectra did not improve quality of model and only peat samples were used in model version N_v15 that 

performed the best (Table 5). Although model version N_v21 had lower RMSEP, version N_v15 was 

chose as more apropriate due to higher slope value (0.928). 

Table 5. Validation summary of Ntot prediction model versions with lowest RMSEP 

Validation 
dataset 

Model 
version 

Spectra RMSEP Bias SEP RPD Offset Slope 

Peatlands, 
4.4-37.4 g kg-1 

 

N_v13 627 2.61 0.187 2.61 2.88 0.988 0.909 

N_v4 627 2.66 
-

0.0352 
2.66 2.82 1.408 0.894 

N_v18 627 2.66 
-

0.0352 
2.66 2.82 1.408 0.894 

Peatlands, 
4.4-13.0 g kg-1 

N_v29 411 1.46 -0.398 1.41 1.62 2.182 0.793 

N_v31 411 1.48 -0.402 1.43 1.6 2.157 0.797 

N_v27 411 1.49 -0.41 1.44 1.59 1.93 0.824 

Peatlands,  
13.0-37.4 g kg-1 

N_v21 216 3.15 -0.864 3.04 2.35 5.976 0.758 

N_v15 216 3.17 0.909 3.04 2.35 0.611 0.928 

N_v19 216 3.19 0.175 3.19 2.24 3.021 0.849 

Peatlands + forest 
lands, 

2.6-37.4 g kg-1 

N_v13 1248 3.08 0.203 3.08 2.93 1.167 0.92 

N_v8 1248 3.11 0.105 3.11 2.9 1.823 0.887 

N_v9 1248 3.14 0.0975 3.14 2.88 1.639 0.898 

Peatlands + forest 
lands, 

2.6-13.0 g kg-1 

N_v27 519 1.97 -0.33 1.95 1.39 2.327 0.758 

N_v29 519 2 -0.405 1.97 1.38 2.548 0.74 

N_v31 519 2.04 -0.472 1.99 1.36 2.773 0.721 

Peatlands + forest 
lands, 

13.0-37.4 g kg-1 

N_v14 729 3.22 0.49 3.19 1.96 2.166 0.886 

N_v8 729 3.34 0.703 3.26 1.91 2.856 0.848 

N_v9 729 3.37 0.595 3.32 1.88 3.112 0.841 
 

Although there is a good correlation (0.81) between predicted and reference N values at lower 

concentration range (<13 g N kg-1), it can be distinguished that dispersion of predicted values slightly 
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increases at concentration range between 7 to 13 g N kg-1. While at concentrations region bellow 7 g N 

kg-1 dispersion is reduced, observed slope (0.79) of regression between predicted and refference N values 

introduces considerable N content underestimation (Figure 12). At this concentration region at most cases 

average bias does not exceed -2.2 g N kg-1 (Figure 13). Attemts to introduce additional calibration at this 

skewed concentration range could not improve N prediction quality. 

 
 Figure 12. Linear regression of Ntot reference (x axis) and predicted values (y axis) 

 

 
Figure 13. Relationship between reference (x axis) and bias of predicted (y axis) Ntot values 

 

N prediction quality at concentration region above 13 g N kg-1 is considerably higher. Correlation between 

predicted and reference values oefficient is 0.91 and slope is introduces considerably lower bias to the 

predicted value (Figure 14). At validated concentration region between 13 and 40 g N kg-1 bias of predicted 

value rarely exceed 5 g N kg-1 (Figure 15). 
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Figure 14. Linear regression of Ntot reference (x axis) and predicted values (y axis) 

 

 
Figure 15. Relationship between reference (x axis) and bias of predicted (y axis) Ntot values 

 

If both model validation results are combined threshold significant changes of N prediction in peat samples 

is around 15 g N kg-1 (Figure 16). If predicted N concentration is bellow 15 g kg-1 at most cases bias is 

limited to 40 %, at higher concentrations bias is reduced significantly RMSbias 15 % and rerely exceeds 

20%. At most cases replicate measurement predicted value relative standard error is well bellow 10 % in 

whole validated concentration region (Figure 17), that can be considered as appropriate performance of 

environmental sample testing. 
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Figure 16. Relationship between predicted Ntot value and relative bias from reference value 

 

 
Figure 17. Relationship between average predicted Ntot value and relative standard deviation of 

replicates 

 

Estimated relative standard deviation of measurement replicates is around 5 % in the whole calibrated and 

validated N prediction concentration region from 4.4 to 13.0 g kg-1. According to method validation results 

root mean squeare bias of predicted value bellow and above concentration 15 g N kg-1, is 19 % and 14 % 

accordingly. By combining prediction method bias repeatability and reference method uncertainty, 

combined uncertainty of N concentration prediction in peat samples is 40 % and 32 % at concentration 

ranges bellow and above 15 g N kg-1 respectively (Table 6). 
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Table 6. N prediction method validation summary 

Concentration 
range 

RMSbias,, % U(Cref), % U(bias), % RSD, % 
Combined 

uncertainty, 
% 

Expanded 
combined 

uncertainty, 
% 

< 15 g kg-1 19.2 13.4 19.45 5.1 20.1 40.3 

> 15 g kg-1 14.4 13.4 14.8 5.3 15.8 31.5 
 

3.4  Phosphorous (P) 

In the scope of this study P calibration attempts encountered considerable difficulties to acquire linear 

relationship between predicted and reference P concentration value during model calibration procedure 

(cross-validation). 44 different model versions were created and 2 calibration concentration ranges 

identified – below and above 0.6 g P kg-1. Validation results of model versions inicate that model version 

P_v27 is the most suitable for lower concentration range, however acquired slope (0.64) and RPD (1.63) 

indicates model weaknesses to predict P concentration in peat samples. For higher range acquired RPD 

value (1.28) of the most suitable model version P_v1 is even lower.  

Table 7. Validation summary of P prediction model versions with lowest RMSEP 

Validation 
dataset 

Model 
version 

Spectra RMSEP Bias SEP RPD Offset Slope 

Peatlands 
0.1-2.2 g kg-1 

 

P_v5 618 0.233 -0.0124 0.233 1.62 0.134 0.637 

P_v13 618 0.239 0.0142 0.239 1.58 0.137 0.551 

P_v7 618 0.242 -0.00017 0.242 1.56 0.145 0.57 

Peatlands,  
0.1-0.6 g kg-1 

P_v27 546 0.0828 -0.00693 0.0826 1.63 0.087 0.637 

P_v44 546 0.0902 -0.0243 0.0869 1.55 0.108 0.618 

P_v12 546 0.0919 -0.0155 0.0907 1.49 0.089 0.668 

Peatlands,  
0.6-2.2 g kg-1 

P_v36 75 0.399 0.116 0.384 1.29 0.531 0.45 

P_v1 75 0.406 0.125 0.389 1.28 0.042 0.858 

P_v5 75 0.497 0.275 0.416 1.19 0.489 0.35 

Peatlands + 
forest lands 
0.1-0.6 g kg-1 

P_v1 342 0.708 0.252 0.663 1.37 0.565 0.406 

P_v36 342 0.809 0.229 0.777 1.17 0.826 0.233 

P_v5 342 0.874 0.334 0.809 1.12 0.799 0.176 

Peatlands + 
forest lands, 
0.6-2.2 g kg-1 

P_v5 315 0.388 0.138 0.363 1.14 0.495 0.451 

P_v1 315 0.395 0.107 0.381 1.08 0.274 0.67 

P_v7 315 0.409 0.144 0.383 1.07 0.683 0.283 
 

Lack of linearity between predicted and reference P concentration values introduces P concentration 

underestimation at concentration range bellow 0.2 g kg-1 and overestimation at concentration range from 

0.2 to 0.6 g kg-1 (Figure 18). Excercise of applying slope and offset values to correct predicted P 

concentration did not improve root mean square of predicted values. Model version P_v27 at most cases 

underestimated or overestimated P concentration by ±18 g P kg-1 (Figure 19). 
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Figure 18. Linear regression of P reference (x axis) and predicted values (y axis) 

 

 
Figure 19. Relationship between reference (x axis) and bias of predicted (y axis) P values 

 

Weak prediction of P concentration higher than 0.6 g kg-1 could be indroduced due to unsufficient 

callibration samples. Low RPD is linked to lack of clear bias tendency distribution (Figure 20). Validation 

results of model version P_v1 indicates that at concentration range from 0.6 to 2.2 g P kg-1 bias of 

predicted value rarely exceeds ±0.7 g P kg-1 (Figure 21). 
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Figure 20. Linear regression of P reference (x axis) and predicted values (y axis) 

 

 
Figure 21. Relationship between reference (x axis) and bias of predicted (y axis) P values 

 

Bias of predicted P concentration values in peat samples by selected model versions expressed in relative 

unit shows that at low concentration ranges in some cases bias exceeded 100 % (Figure 22). Such 

significantly biased prediction values could be introduced by random errors of spectra measurements due 

insufficient sample homogeneity. This study shows that quality of sample preparation in case of other 

analytes allowed to acquire RSD of prediction replicates well below 10 %, however for high number of 

samples P prediction replicate RSD was as high as 20 % and for some samples repeatability was 

significantly lower than that (Figure 23). In this study 3 sample measurement replicates for same sample 

were made, higher count of spectra replicates would allow do discard bad spectra and acquire lower RSD 

and consequently lower also bias values improving overall uncertainty of P prediction model. 
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Figure 22. Relationship between predicted P value and relative bias from reference value 

 

 
Figure 23. Relationship between average predicted P value and relative standard deviation of 

replicates 

 

According to validation of model versions P_v27 and P_v1 results, average relative standard deviation and 

root mean square bias of prediction values are 9 % and 33 % at concentration range from 0.1 to 0.6 g P kg-

1and 13 % and 28 % at concentration range from 0.6 to 2.2 g kg-1 respectively. Accordingly estimated 

combined uncertainty of P prediction in peat samples is 74 % at lower concentration range and 67 % at 

higher concentration range (Table 8). 
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Table 8. P prediction method validation summary 

Concentration 
range 

RMSbias,  U(Cref), % U(bias), % RSD, % Combined 
uncertainty, 
% 

Expanded 
combined 
uncertainty, 
% 

< 0.6 g kg-1 33.11 13.40 35.71 9.33 36.91 73.83 

> 0.6 g kg-1 27.87 13.40 30.93 13.01 33.55 67.10 
 

3.5  Calcium (Ca) 

From 33 Ca prediction model versions the most appropriate for peat samples are found to be versions 

Ca_v29 and Ca_v16 for concentration ranges from 0.3 to 10.0 g Ca kg-1 and from 10.0 to 47,0 g Ca kg-

1 accordingly. Model version validation shows that slope value of regression of predicted and P 

concentration references values for both model versions is above 0.8 and RPD value above 2.0 (Table 9). 

Table 9. Validation summary of Ca prediction model versions with lowest RMSEP 

Validation 
dataset 

Model 
version 

Spectra RMSEP Bias SEP RPD Offset Slope 

Peatlands, 
0.3-47.0 g kg-1 

 

Ca_v18 627 2,73 -0,49 2,69 3,69 0,563 0,991 

Ca_v16 627 2,82 -0,47 2,78 3,57 0,636 0,98 

Ca_v28 627 3,3 -0,749 3,22 3,08 1,098 0,957 

Peatlands, 
0.3.0-10.0 g kg-1 

Ca_v29 456 1,05 -0,037 1,05 2,15 0,327 0,902 

Ca_v26 456 1,11 -0,054 1,11 2,03 0,55 0,832 

Ca_v28 456 1,12 -0,038 1,12 2,01 0,525 0,835 

Peatlands, 
10.0-47.0 g kg-1 

Ca_v16 174 4,41 -0,707 4,37 2,05 4,223 0,84 

Ca_v18 174 4,61 -1,05 4,51 1,99 5,125 0,815 

Ca_v1 174 4,98 -1,29 4,83 1,86 8,564 0,669 

Peatlands + 
forest lands, 

0.1-54.4 g kg-1 

Ca_v1 1122 4,74 0,0704 4,74 2,72 1,744 0,858 

Ca_v15 1122 4,86 -0,021 4,87 2,65 1,92 0,852 

Ca_v12 1122 4,9 -0,048 4,9 2,64 1,944 0,852 

Peatlands + 
forest lands, 

0.1-10.0 g kg-1 

Ca_v13 621 1,66 -0,281 1,64 1,49 0,761 0,85 

Ca_v24 621 1,71 -0,305 1,68 1,46 1,107 0,75 

Ca_v11 621 1,74 -0,343 1,71 1,43 0,825 0,85 

Peatlands + 
forest lands, 

10.0-54.4 g kg-1 

Ca_v23 501 5,85 -0,473 5,83 1,81 8,958 0,656 

Ca_v1 501 6,03 0,913 5,96 1,77 7,324 0,666 

Ca_v15 501 6,2 0,931 6,13 1,72 7,298 0,666 

 

In addition, also high correlation coefficient (0.9) of relationship between predicted and Ca reference 

values indicates good Ca prediction models capabilities in both calibration ranges (Figure 24 and Figure 

26). For lower calibration range prediction bias is evenly distributed across whole concentration range 

from 0.3 to 10.0 g Ca kg-1, estiumate root means squeare error of prediction is 1.05 g Ca kg-1 (Figure 

25). For higher concentration range (from 10.0 to 47.0 g Ca kg-1) bias distribution is ratker skewed. From 
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around 10 to 20 g kg-1 Ca content tens to be uderestimated, but atconcentration above 20 g Ca kg-1 – 

slightly overestimated (Figure 27). 

 
Figure 24. Linear regression of Ca reference (x axis) and predicted values (y axis) 

 

 
Figure 25. Relationship between reference (x axis) and bias of predicted (y axis) Ca values 
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Figure 26. Linear regression of Ca reference (x axis) and predicted values (y axis) 

 

 
Figure 27. Relationship between reference (x axis) and bias of predicted (y axis) Ca values 

 

Ca prediction can be characterized with comparably more reduced repeatability at concentration range 

approximately bellow 5 to 10 g Ca kg-1 where RSD of prediction replicates reaches 40 %, consequently 

at this concentration range also bias at some cases reaches 200 %. Therefore similar to case of P prediction, 

also Ca prediction quality can be increased by creating additional spectra replicates for the same tested 

sample. At concentration range above 5 g kg-1 Ca prediction quality increases considerably (Figure 28 

and Figure 29). 
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Figure 28. Relationship between predicted Ca value and relative bias from reference value 

 

 
Figure 29. Relationship between average predicted Ca value and relative standard deviation of 

replicates 

 

According to validation of model versions P_v26 and P_v16 results, average relative standard deviation 

and root mean square bias of prediction values are 13 % and 46 % at concentration range from 0.3 to 10.0 

g P kg-1and 6 % and 25 % at concentration range from 10.0 to 47.0 g kg-1 respectively. Accordingly 

estimated combined uncertainty of Ca prediction in peat samples is 49 % at lower concentration range 

and 28 % at higher concentration range (Table 10). 
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Table 10. Ca prediction method validation summary 

Concentration 
range 

RMSbias,  U(Cref), % U(bias), % RSD, % Combined 
uncertainty, 
% 

Expanded 
combined 
uncertainty, 
% 

<10 .0 g kg-1 45.96 8.97 46.82 13.00 48.60 97.19 

> 10.0 g kg-1 25.26 8.97 26.81 6.24 27.52 55.04 

 

3.6  Magnesium (Mg) 

By different combinations of exclusion of spectral outliers, preprocessing method, selection of calibration 

regions and count of ranks, 21 Mg calibration versions were elaborated. In order to find the most 

appropriate calibration model versions for peat screening, elaborated Mg calibration models were 

validated by different validation spectrum data set versions. It was found that for peat screening 

combination of 2 acquired calibration model versions would be most appropriate: version Mg_v18 for 

high concentration range (Mg > 2.5 g kg-1) and version Mg_v21 for low concentration range < 2.5 g Mg 

kg 1 (Table 11). Although PCA indicated spectral differences between sample groups of peatlands and 

forest lands, acquired quality of model version Mg_v3 indicates that also combination of booth data sets 

can be used for robust Mg prediction model. 

Table 11, Validation summary of Mg prediction model versions with lowest RMSEP 

Validation 
dataset 

Model 
version 

Spectra RMSEP Bias SEP RPD Offset Slope 

Peatlands, 
0.1-4.4 g kg-1 

Mg_v18 648 0.365 -0.0141 0.365 2.67 0.119 0.904 

Mg_v3 648 0.38 0.00685 0.38 2.56 0.168 0.84 

Mg_v19 648 0.389 0.0152 0.389 2.5 0.186 0.816 

Peatlands, 
0.1-2.5 g kg-1 

Mg_v20 564 0.263 0.00612 0.263 2.12 0.128 0.829 

Mg_v21 564 0.265 -0.00166 0.266 2.1 0.13 0.837 

Mg_v19 564 0.276 -0.0373 0.273 2.04 0.135 0.875 

Peatlands + 
forest lands, 
0.1-4.4 g kg-1 

Mg_v3 1128 0.536 -0.012 0.536 2.16 0.308 0.798 

Mg_v1 1128 0.622 -0.0325 0.622 1.86 0.409 0.742 

Mg_v6 1128 0.663 0.141 0.648 1.78 0.091 0.842 

Peatlands + 
forest lands, 
0.1-2.4 g kg-1 

Mg_v5 885 0.362 0.0314 0.361 1.8 0.295 0.66 

Mg_v8 885 0.363 0.038 0.361 1.79 0.296 0.653 

Mg_v3 885 0.445 -0.122 0.428 1.52 0.16 0.96 
 

Both model versions chosen as most applicable provide comparably good Mg prediction capabilities due 

to high correlation between predicted and reference values of Mg concentration in validation tests set peat 

samples (Figure 30 and Figure 32). Root mean square error of prediction for low concentration range (0.1-

2.5 g kg-1) and whole calibration range (0.1-4.4 g kg-1) according to validation results is 0.265 g kg-1 

(Figure 31) and 0.365 g kg-1 accordingly (Figure 33). 
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Figure 30. Linear regression of Mg reference (x axis) and predicted values (y axis) 

 

 
Figure 31. Relationship between reference (x axis) and bias of predicted (y axis) Mg values 
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 Figure 32. Linear regression of Mg reference (x axis) and predicted values (y axis) 

 

 
Figure 33. Relationship between reference (x axis) and bias of predicted (y axis) Mg values 

 

Mg concentration prediction performance by combination of model versions Mg_v18 and Mg_v21 was 

further evaluated by estimating combined uncertainty of predicted values. According to external validation 

with peatlands data set, prediction performance considerably decreased if predicted value of Mg 

concentration is bellow ~ 1.3 g kg-1 (Figure 34) when for some samples bias of predicted values exceeded 

100 %. Increased measurement bias is related to reduction of prediction measurement repeatability at low 

concentration range. At concentration range above 1 g Mg kg-1 RSD is mostly well bellow 10 %, however 

when concentration exceeds 1 g Mg kg-1 at some cases RSD reaches and exceeds RSD of 20 % (Figure 

35). 
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 Figure 34. Relationship between predicted Mg value and relative bias from reference value 

 

 
Figure 35. Relationship between average predicted Mg value and relative standard deviation of 

replicates 

 

If predicted concentration is bellow 1.3 g Mg kg-1 root mean square bias of predicted value is 55 % and 

relative standard deviation of prediction replicates is 12 %. For concentration range above 1.3 g Mg kg-1 

estimated bias and repeatability is 31 % and 4 % respectively. If these prediction quality indicators are 

combined with reference method uncertainty of 8 %, combined uncertainty of C content prediction at 

concentration range below and above 1.3 g C kg-1 is 115 % and 65 % respectively. 
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Table 12. Mg prediction method validation summary 

Concentration 
range 

 
RMSbias, 

% 
U(Cref), 

% 
U(bias), 

% 
RSD, % 

Combined 
uncertainty, 

% 

Expanded 
combined 

uncertainty, 
% 

< 1.3 g kg-1  55.41 7.85 55.95 12.27 57.28 114.57 

> 1.3 g kg-1  31.42 7.85 32.38 4.16 32.65 65.29 
 

3.7  Potassium (K) 

From 22 calibration model versions created for prediction of K content in peat samples 2 separate versions 

were found to be most suitable for N prediction in 2 concentration ranges: below and above 1.7 g K kg-

1. At lower range, the best performance was for model version K_v14 for which only peatland sample 

spectra were used as calibration data set to achieve best performance of K prediction in peat samples. 

While for concetration range above 1.7 g K kg-1 forest soils sample spectra did improve quality of model 

and combination of peat and forest land sample sepctra were used for creation of model version N_v5 that 

performed the best (Table 13).  

Table 13. Validation summary of K prediction model versions with lowest RMSEP 

Validation 
dataset 

Model 
version 

Spectra RMSEP Bias SEP RPD Offset Slope 

Peatlands 
(0.005-8.8 

g kg-1) 
 

K_v5 654 0.83 0.0929 0.826 1.36 0.33 0.351 

K_v11 654 0.86 0.168 0.845 1.33 0.279 0.314 

K_v22 654 0.864 0.213 0.838 1.34 0.229 0.322 

Peatlands, 
0.005-1.7 g 

kg-1 

K_v14 606 0.25 0.00332 0.25 1.62 0.121 0.68 

K_v18 606 0.26 
-

0.00248 
0.26 1.56 0.147 0.628 

K_v9 606 0.262 0.058 0.256 1.59 0.142 0.485 

Peatlands, 
1.7-8.8 g 

kg-1 

K_v5 48 2.81 2.39 1.49 1.18 0.345 0.313 

K_v22 48 2.99 2.61 1.47 1.2 0.353 0.258 

K_v8 48 3 2.51 1.67 1.06 0.762 0.179 

Peatlands + 
forest lands 
0.005-8.8 g 

kg-1 

K_v2 1146 0.772 0.115 0.764 1.28 0.339 0.307 

K_v1 1146 0.783 0.126 0.774 1.26 0.337 0.293 

K_v11 1146 0.79 0.0838 0.786 1.24 0.348 0.342 

Peatlands + 
forest lands 
0.005-2.2 g 

kg-1 

K_v18 1095 0.422 -0.137 0.399 1.14 0.219 0.83 

K_v8 1095 0.422 -0.12 0.405 1.12 0.21 0.813 

K_v14 1095 0.356 -0.107 0.34 1.34 0.223 0.76 

Peatlands + 
forest lands 

2.2-8.8 g 
kg-1 

K_v5 51 3.06 2.48 1.81 0.928 1.058 0.185 

K_v22 51 3.24 2.54 2.04 0.821 1.312 0.115 

K_v8 51 3.25 2.72 1.79 0.936 1.219 0.094 
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Model version K_v14 was chosen as most appropriate for K prediction in peat samples for concentration 

range from 0.01 to 1.7 g K kg-1 as model verification showed the lowest both RMSEP (0.25) and SEP 

(0.25) values for this specific model versions, however slope value of linear regression between refference 

values and predicted value 0.68 is rather low (Figure 36). Data available for model calibration could not 

achieve significantly better model performance – for different model versions slope ranged form 0.425 to 

0.695. Test set validation of model version K_v15 indicates that In most cases bias of predicted K 

concentration does not exceed 0.3 g K kg-1 (Figure 37). 

 
 Figure 36. Linear regression of K reference (x axis) and predicted values (y axis) 

 

 
Figure 37. Relationship between reference (x axis) and bias of predicted (y axis) K values 

 

Validation of model version for K prediction in concentration range above 1.7 g K kg-1 was not sucessful 

as highest acquired corelation coefficient of relationship between predicted and reference K concentration 

value in validation peat sample test set was 0.54. In order to improve prediction results validation suggests 

to apply bias correction 2.39 (Figure 39), however calibration and validation sample count was not 
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sufficient to consider bias correction. 

 
Figure 38. Linear regression of K reference (x axis) and predicted values (y axis) 

 

 
Figure 39. Relationship between reference (x axis) and bias of predicted (y axis) K values 

 

Performance of both chosen models combined is represented in Figure 40 and Figure 41. Similarly to cases 

of P and Ca, also K prediction method validation indicates that model performance could be improved by 

increasing count of spectra replicates to aim towards reduced relative standard deviation of prediction 

replicates by discarding faulty spectrum. 
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Figure 40. Relationship between predicted K value and relative bias from reference value 

 

 
Figure 41. Relationship between average predicted K value and relative standard deviation of 

replicates 

 

According to test set validation results, if predicted concentration is below 0.5 g K kg-1 root mean square 

bias of predicted value is 100 % and relative standard deviation of prediction replicates is 17 %. For 

concentration range above 0.5 g K kg-1 estimated bias and repeatability is 66 % and 8 % respectively. If 

these prediction quality indicators are combined with reference method uncertainty of 11 %, combined 

uncertainty of C content prediction at concentration range below and above 0.5 g C kg-1 is 102 % and 68 

% respectively (Table 14). 
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Table 14. K prediction method validation summary 

Concentration 
range 

RMSbias, % U(Cref), % U(bias), % RSD, % 
Combined 

uncertainty, 
% 

Expanded 
combined 

uncertainty, 
% 

< 0.5 g kg-1 100.02 10.66 100.58 16.75 101.97 203.93 

> 0.5 g kg-1 66.30 10.66 67.15 7.81 67.61 135.21 
 

3.8  Humic acid 

For prediction of humic acid content in total 13 calibration model versions were created. According model 

validation results model version 6 provided the most accurate humic acid prediction results (Table 15.) 

Table 15. Validation summary of humic acid prediction model versions with lowest RMSEP 

Validation 
dataset 

Model 
version 

Spectra RMSEP Bias SEP RPD Offset Slope 

Peatlands, 
20.9-138.6 g 

kg-1 
 

6 90 24.5 8.26 23.1 1.24 31.138 0.299 

11 90 24.5 8.94 22.9 1.25 31.53 0.28 

13 90 24.5 8.6 23 1.24 31.371 0.289 

Peatlands, 
20.9-85.0 g 

kg-1 

6 78 8.82 0.0945 8.88 1.99 12.711 0.73 

13 78 9.11 0.577 9.15 1.93 14.723 0.677 

10 78 9.13 
-

0.0676 
9.19 1.92 17.349 0.636 

Peatlands, 
85.0-138.6 g 

kg-1 

4 12 63.4 61.7 15.3 1.23 20.191 0.278 

6 12 63.1 61.3 15.4 1.23 18.757 0.293 

2 12 65 63.2 15.7 1.2 20.355 0.263 

 

Model version 6 was the moist suitable version for humic acid content prediction in whole available 

validation data set concentration range from 20.9 to 138.6 g humic acid kg-1. However 2 calibration 

ranges are distinquished as prediction power significantly reduced if humic acid concentration in reference 

samples exceeded 85.0 g kg-1. Most likely such reduction in model performance is observed to to 

isuficcient calibration samples in high humic acid concentration range. Although validation results 

indicated low slope value also for concetration range bellow 85 g kg-1, acquired RMSEP value is 

considerably low (8.82 g kg-1) and RPD value is 2 (Figure 42 and Figure 43) indicating that model can 

be applied for humic acid concentration prediction in unknown samples. 
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 Figure 42. Linear regression of humic acid reference (x axis) and predicted values (y axis) 

 

 
Figure 43. Linear regression of humic acid reference (x axis) and predicted values (y axis) 

 

Validation results indicate that current model significantly underestimates humic acid content if reference 

value exceeds 85 g kg-1. Correlation analysis for relationship of predicted and references values of humic 

acid indicates moderate correlation(Figure 44), furthermore average estimated bias of predicted values is 

and RMSEP is arount 60 g kg-1 (Figure 45).  
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Figure 44. Linear regression of humic acid reference (x axis) and predicted values (y axis) 

 

 
Figure 45. Relationship between reference (x axis) and bias of predicted (y axis) humic acid values 

 

Validation bias results expressed in relative values (Figure 46) indicates that bias is in range of ±60 % and 

samples with humic acid reference concentration above 85 g kg-1 are unerestimated by ~60 % (Figure 

46). 
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Figure 46. Relationship between predicted humic acid value and relative bias from reference value 

 

According to estimated relative standard deviation that reaches 20 % (Figure 47), humic acid prediction 

precision can be slight improved by increasing count of spectra replicates for the same sample, but most 

likely prediction model performance suffers due to insufficient variety of calibration samples. 

 
Figure 47. Relationship between average predicted humic acid value and relative standard deviation of 

replicates 

 

By taking into account humic acid prediction model validation results on prediction bias and repeatability 

as well as reference method uncertainty, combined humic acid prediction uncertainty is 26 % and 52 % at 

concentration range bellow and above 85 g kg-1 threshold accordingly (Table 16). 
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Table 16. Humic acid prediction method validation summary 

Concentration 

range 

RMSbias, 

% 
U(Cref), % U(bias), % RSD, % 

Combined 

uncertainty, 

% 

Expanded 

combined 

uncertainty, 

% 

24-85 g kg-1 22.52 10.0 24.64 8.32 26.00 52.01 
85.0-138.6 g kg-

1 
50.24 10.0 51.22 8.75 51.96 103.93 
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4.  SUMMARIZED RESULTS 
In the scope of this study it was observed that RSD value considerably lower than 2 signals a possible 

difficulty to apply current methodological approach for quantitative analyte prediction in unknown samples. 

The highest potential of prediction performance was observed for pH, Ca and Mg, but the lowest 

perspective for P and K (Table 17). C, N and humic acid as well as other parameter prediction performance 

may be improved by primary increasing count and variety of calibration samples (spectra) and secondary 

by increasing count of measurement replicates for the same sample to discard replicates that increases 

relative standard deviation of prediction replicates above threshold, e.g. 10 %. It was observed that mostly 

the highest performance of analyte prediction in peat samples was for prediction models elaborated by peat 

soil calibration data set only, addition of forest soil sample spectra to calibration data set did not improve 

model performance. Nevertheless, also for such calibration data sets with peat soils only, PCA often 

indicated significant spectral differences that could have added uncertainty to values predicted by model. 

In the scope of the study separation of spectra by PCA did not improve model quality as model robustness 

may have decreased to to insufficient number of spectra. Higher number of spectra would allow to make 

separate calibration models by focusing more on PCA results. Afterwards these models could be applied to 

unknown samples by guidance of values of spectral residues and Mahalanobis distance to match appropriate 

models and unknown spectra. Other potential solution for improving model prediction capabilities may be 

improvements of sample preparation procedure (ensuring more homogenous samples).  
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Table 17. MIR DRIFTS method validation summary 

Parameter Validated 
concentration 
range 

Calibration 
dataset4 

Spectral 
regions 

Preprocessing RPD Combined 
uncertainty, 
% 

pH pH 2.0-6.6 P+F 
3996.2-3315.9; 
2977.9-1617.3 

MSC 6.28 6.2 

C 

33.7-540.0 g 
kg-1 

P 

3997.6-3656.7; 
3318.7-2997.9; 
2639.9-1958.1; 
1620.1-600.4 

FD+VN 2.6 28.1 

540.0-699.0 g 
kg-1 

P+F 
3997.6-2638.4; 

229-939.9 
FD+VN 1.53 6.3 

N 
4.4-13.0 g kg-1 P 

3997.6-3656.7; 
3318.7-2977.9; 
2639.9-1958.1; 
1620.1-1279.3 

VN 1.62 20.1 

13.0-37.4 g 
kg-1 

P 
3318.7-2638.4; 

2299-939.9 
FD 2.35 15.8 

P 

0.1-0.6 g kg-1 P 
2979.3-2299; 

1959.6-1618.7 
VN 1.63 36.9 

0.6-2.2 g kg-1 P+F 
3658.1-2977.9; 
2299-1958.1; 
1620.1-600.4 

FD+VN 1.28 33.6 

Ca 

0.3.0-10.0 g 
kg-1 

P 

3996.2-3655.3; 
3317.3-2976.4; 
2638.4-1956.7; 
1618.7-1277.9 

FD+VN 2.15 48.6 

10.0-47.0 g 
kg-1 

P 
3996.2-2637; 

2297.6-1956.7; 
1279.3-938.4 

FD+VN 2.05 27.5 

Mg 

0.1-2.4 g kg-1 P 
2299-1279.3; 
941.3-600.4 

MSC 2.67 57.3 

2.4-4.4 g kg-1 P 
3318.7-2977.9; 
2639.9-2299; 

1959.9-1279.3 
MSC 2.1 32.7 

K 

0.005-1.7 g 
kg-1 

P 
3997.6-2977.9; 
1959.6-939.9 

FD 1.62 102.0 

1.7-8.8 g kg-1 P+F 
3997.6-3317.3; 
1959.6-1618.7 

FD+VN 1.18 67.6 

Humic 
acid 

20.9-85.0 g 
kg-1 

F 3997.6-3317.3; 
2979.3-2297.6; 
1959.6-1617.3 

MSC 1.99 26.0 

85.0-138.6 g 
kg-1 

F MSC 1.23 52.0 

 

  

 
4 P – samples originated from peatlands; F – samples originated from forest lands 
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